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Linear stochastic models of nonlinear dynamical systems
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~Received 3 June 1998!

We investigate in this work the validity of linear stochastic models for nonlinear dynamical systems. We
exploit as our basic tool a previously proposed Rayleigh-Ritz approximation for theeffective actionof non-
linear dynamical systems started from random initial conditions. The present paper discusses only the case
where the probability density functionAnsatzemployed in the variational calculation is ‘‘Markovian,’’ i.e., is
determined completely by thepresentvalues of the moment averages. In this case we show that the Rayleigh-
Ritz effective action of the complete set of moment functions that are employed in the closure has a quadratic
part which is always formally an Onsager-Machlup action. Thus, subject to satisfaction of the requisite real-
izability conditions on the noise covariance, a linear Langevin model will exist which reproduces exactly the
joint two-time correlations of the moment functions. We compare our method with the closely related formal-
ism of principal oscillation patterns~POP!, which, in the approach of Penland, is a method to derive such a
linear Langevin model empirically from time-series data for the moment functions. The predictive capability of
the POP analysis, compared with the Rayleigh-Ritz result, is limited to the regime of small fluctuations around
the most probable future pattern. Finally, we shall discuss athermodynamics of statistical momentswhich
should hold for all dynamical systems with stable invariant probability measures and which follows within the
Rayleigh-Ritz formalism.@S1063-651X~98!13111-2#

PACS number~s!: 05.40.1j, 05.45.1b, 92.60.Wc, 05.70.Ln
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I. INTRODUCTION

We consider nonlinear dynamical systems governed
~possibly nonautonomous! differential equations:

ẋ5Û~x,t !. ~1.1!

We may takex5(x1 , . . . ,xp)Á to have any number of com
ponents, possibly infinitely many, formally includin
infinite-dimensional dynamical systems governed by par
differential equations, etc. In many contexts the dynamics
a selected set of variablesĉ(x)5„ĉ1(x), . . . ,ĉn(x)…Á is of
interest. Of course, by the chain rule

] tĉ5~Û•¹x!ĉªV̂. ~1.2!

When the dynamics is nonlinear, the right-hand sideV̂ of Eq.
~1.2! cannot generally be expressed in terms of the functi
ĉ themselves. For example, whenÛ(x) and ĉ(x) are poly-
nomial functions ofx, the right-hand side consists of highe
degree polynomials. This is a manifestation of theclosure
problemof nonlinear dynamical systems.

If one considers the initial-value problem with rando
initial data, a common strategem to obtain mean val
m(t)ª^ĉ& t is to make amoment closureapproximation

^(Û•¹x)ĉ& t'V(m,t) for some functionV of the selected
moments, so that a closed equation

ṁ~ t !5V~m,t ! ~1.3!

is obtained. Likewise, if one is interested influctuationsof
the variablesĉ(t), then one can make an approximation th

ċ̂~ t !'V~ĉ,t !1q̂~ t !, ~1.4!
PRE 581063-651X/98/58~6!/6975~17!/$15.00
y

l
f

s

s

t

where q̂(t) is a random forceof known statistics, which is
supposed to represent the effects of neglected variables
yond the subsetĉ retained. Such a model—if it is valid—
will clearly give important information about predictabilit
of the variablesĉ(t). For example, conditional probabilitie
P(c,tuc0 ,t0) are implied, which express precisely the limi
on predicting the moment variables at a future timet given
their values at the present timet0. One is thus interested to
know the possibilities and limitations of such a stochas
modelization.

In previous work@1,2# we have studied fluctuations o
nonlinear dynamics by anaction principle. Such an approach
to fluctuation theory goes back to the work of Onsager a
Machlup @3#. They showed that alinear Langevin dynamics

ċ̂~ t !5A~ t !ĉ1q̂~ t !, ~1.5!

in which q̂(t) is a Gaussian random force with zero me
and covariance

^q̂~ t !q̂Á~ t8!&52Q~ t !d~ t2t8!, ~1.6!

can always be completely and equivalently reformulated
terms of an action functionalG@c#:

G@c#5
1

4Et0

`

dt~ċ2Ac!ÁQ21~ċ2Ac!. ~1.7!

The interpretation of this functional is as a ‘‘fluctuation p
tential’’ for time histories. That is, the probability that a pa
ticular fluctuation valuec(t) occurs for the random variabl
ĉ(t) is given in terms of the Onsager-Machlup action by t
exponential formula
6975 © 1998 The American Physical Society
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Prob„ĉ~ t !'c~ t !:2`,t,1`…;e2G[ c] . ~1.8!

This gives the most direct probabilistic significance of t
Onsager-Machlup action. The fact that the action is a q
dratic functional ofc is consistent with the fact that th
solution of the linear Langevin equation is a normal rand
variable, with a Gaussian probability distribution.

Although the Onsager-Machlup theory as originally d
veloped was restricted to linear Langevin dynamics, the
tion method is completely general: For any statistical d
namical system and for any selected subset of rand
variables ĉ, an effective actionG@c# can be introduced
which plays the same role as the Onsager-Machlup ac
does for linear Langevin dynamics. It also has an interpre
tion as a fluctuation potential for the empirical average o
N independent samples@4#, i.e.,

ProbS 1

N(
n51

N

ĉ~n!~ t !'c~ t !:2`,t,1` D
;exp~2NG@c# !. ~1.9!

@The additional factor ofN in the exponent in Eq.~1.9! is
discussed more below. See Eqs.~2.44!–~2.46!.# The effec-
tive action is also a generating functional for all~irreducible!
multitime correlations of the variablesĉ(t), of arbitrary or-
der, and thus completely characterizes the distribution
those variables. To be precise, if the effective action is
panded into a functional power series indc(t)ªc(t)
2^ĉ(t)&, as

G@c#5 (
k52

1

k! E dt1•••E dtkG i 1••• i k
~k! ~ t1 , . . . ,tk!

3dc i 1
~ t1!•••dc i k

~ tk!, ~1.10!

then the coefficients are just the irreducible multitime co
elators@5#. The correlators withk>3 would all be zero for a
Gaussian process. We shall not review these subjects fu
here, since they have been thoroughly discussed elsew
@1,2#.

In our earlier works, we developed a Rayleigh-Ritz a
proximation method by which the effective actionsG@z# of
any set of random variablesẐ may be calculated within a
moment-closure scheme based upon anAnsatzfor a prob-
ability density function~PDF!. In particular, an approximate
effective action may be obtained forĉ, the moment variables
retained in the closure. We shall show here that suc
Rayleigh-Ritz approximate effective actionG* @c# of the
moment variables themselves is not only a formal gener
zation of the Onsager-Machlup action, but is actually mu
more closely related. In fact, we shall show that the lead
quadratic term in the Taylor expansion~1.10! of G* @c# is
always precisely of the Onsager-Machlup form, when
PDF Ansatzemployed in the Rayleigh-Ritz calculation
‘‘Markovian.’’ By the latter specification we denote PD
Ansätzewhich are completely determined by thepresentval-
ues which they assign to averages of the moment functi
Our result means that, for such a ‘‘Markovian’’ PDFAnsatz,
there isalwaysformally a linear Langevin dynamics such a
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Eq. ~1.5! which gives predictions for the two-time correla
tions ^dĉ(t)dĉÁ(t8)& that are the same as those given
the Rayleigh-Ritz effective action. In general, however,
higher-order correlations, the linear Langevin model and
Rayleigh-Ritz effective action will not yield the same predi
tions.

It is our purpose here to present the derivation of
linear Langevin model via the effective action method and
discuss its physical interpretation and limits of applicabili
The effective action provides a framework to derive not on
the linear theory but also the higher-order statistics~higher
order in terms of the size of the fluctuations or the order
the correlator!. It thus provides a means to assess the size
the corrections to the linear description. On the other ha
the linear Langevin model gives always the leading-or
contribution to the effective action and, therefore, many
the important features of the full Rayleigh-Ritz approxim
tion are essentially entirely determined by the linear eq
tion. We shall in addition give a more intuitive derivation o
the Langevin model within moment-closure methodolog
but not using a systematic or formal scheme. While suc
derivation provides no possibility to assess limitations of
linear description, nevertheless it provides insight into
physical assumptions involved. We shall also compare
method with the principal oscillation pattern~POP! analysis,
which is a well-known method to extract linear stochas
models empirically from time-series data@6#. Finally, we
shall conclude with some general discussion on the ther
dynamics of moment-averages for dynamical systems w
stable statistics. In particular, we discuss the law of entro
increase and fluctuation-dissipation relations at the lin
level.

II. RAYLEIGH-RITZ EFFECTIVE ACTION
OF MOMENT VARIABLES

A. Reprise of the Rayleigh-Ritz method

The Rayleigh-Ritz approximation of the effective actio
is based upon a variational formulation of the mome
closure scheme. This is just a variational formulation of t
method of weighted residuals@7# to solve] tP52¹x–(ÛP)
ªL̂P, the Liouville equation for the phase-space distributi
P. The basic ingredients of a moment closure are~i! a set of
moment functionsĉ(x,t)5„ĉ1(x,t), . . . ,ĉn(x,t)… and ~ii ! a
PDF AnsatzP(x;m,t), conveniently parametrized by th
mean valuesmi5^ĉ i&, i 51, . . . ,n, which it assigns to
those functions. The variablet is included to denote anex-
plicit time dependence, i.e., any time dependence other
the implicit one through parametersa(t),m(t). The a-type
parameters appear in the variational formulation of the c
sure, in which one incorporates all of the moment functio
into a single linear combination,

A~x;a,t !5(
i 50

n

a i ĉ i~x,t !. ~2.1!

Note that the constant functionĉ0(x,t)[1 must be included
in the sum in order to satisfy the final-time conditionA(`)
[1. The PDFAnsatzP(x;m,t) is subject to an initial con-
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dition that it match the considered initial distributionP0 for
the problem,P(x;m,t0)5P0, in the weighted-residual sens
that the averages of then moment functionsĉ(t) must
match. Then, it is not hard to show that themoment-closure
equation

ṁ~ t !5V„m~ t !,t…, ~2.2!

whereV(m,t)ª^(] t1L̂†)ĉ(t)&m,t , is the result of varying
the action functional

G@A,P#5E
t0

`

dt@^A~ t !,Ṗ~ t !&2^A~ t !,L̂P~ t !&# ~2.3!

over the aboveAnsätze for A(t),P(t), with variational pa-
rametersa0(t),a(t),m(t). The Euler-Lagrange equations fo
m(t) are just Eq.~2.2! while the equations fora0(t),a(t)
have the unique solutiona0(t)[1,a(t)[0 subject to the fi-
nal conditions.

The Rayleigh-Ritz approximation to the effective acti
G* @z# of a set of random variablesẐ is obtained, in general
as the stationary pointG* @z#5Fst.pt.A,P

G@A,P# varied over

A(t),P(t) of the above forms, subject to the additional co
straints of unit overlap

^A~ t !,P~ t !&51 ~2.4!

and fixed expectation

^A~ t !,Ẑ~ t !P~ t !&5z~ t ! ~2.5!

for each given historyz(t), for all times t after the initial
time t0. @Recall thatẐ(t) is an observable in the ‘‘Schro¨-
dinger picture’’ and that the only time dependence is
plicit.#

We show here that the Rayleigh-Ritz approximati
G* @c# to the effective action of the moment variables the
selves has, in general, a quadratic part which is just
Onsager-Machlup action, when closure is achieved wit
the framework outlined above. Other closure schemes
conceivable within the Rayleigh-Ritz formalism and m
even better represent the physics in certain situations
‘‘Markovian’’ approximation has been made above, in a
suming that the PDFAnsatzP(•;m,t) is parametrized by
only thepresent valuem(t) of the n moment averages. Thi
is by no means necessary. More generally, one may ass
thatP@•;m,t# is a functional of the entirepast mean history
$m(s):s,t% of the n moment functions. In that case, th
closure equation becomes

ṁ~ t !5V@ t;m#, ~2.6!

in which V@ t;m# is now also a functional over the past me
history. It is not hard to show that anexactequation always
exists of the form~2.6! for a suitable choice of the functiona
V@ t;m#. ~For example, see@8#, Appendix A1.! Thus, a clo-
sure incorporating such history effects is likely to be mo
faithful to the physics, in general. Our work here does
discuss this more general case, but confines itself to
‘‘Markovian’’ Ansatz. Although this is restrictive, it is nev
ertheless the case that most practical closures consider
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the literature are of this type. It is also possible, even wit
this more restrictive ‘‘Markovian’’ framework, to include
some history effects. This may be done, for example,
constructing a closure using not only then moment functions
ĉ(t), but also the correspondingn velocity functions@this
definition generalizes that in Eq.~1.2! to the case with ex-
plicit time dependence#

V̂~ t !ª~] t1L̂†!ĉ~ t !. ~2.7!

In this case, the closure equations become, instead of
~2.2!,

ṁ~ t !5V~ t !,
~2.8!

V̇~ t !5G„m~ t !,V~ t !,t…,

whereG(m,V,t)ª^(] t1L̂†)V̂(t)&m,V,t is the averageaccel-
eration of the moment functions within a PDFAnsatzde-
pending jointly uponm,V. Such schemes may be continue
indefinitely to higher orders, e.g., the next stage would be
include a dependence jointly uponm,V,G in the PDFAn-
satz. All of the results of this work carry over to such clo
sures in terms of higher-order time derivatives, if one sim
considers the enlarged set of moment functionsĈ

5(ĉ,V̂),(ĉ,V̂,Ĝ), etc. A linear Langevin model will al-
ways formally exist within such closure schemes which w
exactly reproduce the predictions of the Rayleigh-Ritz eff
tive action for the two-time statistics of the moment variab
Ĉ considered.

B. Rayleigh-Ritz effective action: Exact expressions

It is the main purpose of this paper to demonstrate
latter essential fact. We will begin by developing some ex
expressions forG* @c#. Substituting the given forms o
A(t),P(t) into the action~2.3!, one obtains

G5(
i 51

n E
t0

`

dta i~ t !@ṁi~ t !2Vi„m~ t !,t…#. ~2.9!

The overlap constraint~2.4! may be incorporated by elimi
nating the coefficienta0(t), giving

A~ t !511(
j 51

n

a j~ t !@ĉ j~ t !2mj~ t !#. ~2.10!

With that choice, the fixed expectation constraint~2.5! be-
comes

c i~ t !5mi~ t !1(
j 51

n

a j~ t !Ci j ~ t !, ~2.11!

whereC(t)ª^ĉ(t)ĉÁ(t)& t2m(t)mÁ(t) defines the covari-
ance matrix of the moment functions. Equation~2.11! is easy
to invert, with the result thata(t)5C21(t)@c(t)2m(t)#. It
is convenient to denote the inverse of the covariance ma
by G(t)ªC21(t). Substituting the above results fora(t), the
action becomes
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G* @c ;m#5E
t0

`

dt@ṁ~ t !2V„m~ t !,t…#ÁG~ t !@c~ t !2m~ t !#.

~2.12!

In this expression, all of the constraints have been prop
incorporated, and the only remaining variational parame
are them(t) variables. A set of variational equations must
developed to determine these, derived from the stationa
condition of the action.

Before carrying out this variation, however, it is useful
introduce some auxiliary quantities. Define, within the PD
Ansatzemployed, a single-time cumulant-generating fun
tion

F„hum~ t !,t…ª ln^exp„h–ĉ~ t !…& t ~2.13!

for the moment functionsĉ(t), wherem(t) is the mean of
the moment function within the PDFAnsatz. That is, the
partial derivatives

Ci 1••• i p

~p! ~ t !5
]pF

]hi 1
•••]hi p

„hum~ t !,t…uh50 ~2.14!

are just thepth-order cumulants of theĉ(t) within the An-
satz. The Legendre transform

H„mum~ t !,t…:5suph@m–h2F„hum~ t !,t…#, ~2.15!

a generalized entropy, is the generating function of irreduc
ible correlation functions. That is,

G i 1••• i p

~p! ~ t !5
]pH

]m i 1
•••]m i p

„mum~ t !,t…um5m~ t ! . ~2.16!

In particular, the relations hold that

G i
~1!~ t !5hi„m~ t !,t…,

~2.17!

G i j
~2!~ t !5Ci j

21~ t !5
]hi

]m j
„m~ t !,t….

The latter relation will prove crucial in what follows.
It may be worthwhile to explain the intuitive significanc

of these single-time quantities before continuing with t
development of the formulas for the action. They are all p
of a generalthermodynamics of moments. Thus, the entropy
H is a form of Boltzmann’s entropy, with his original sig
convention, i.e., positive and convex. It is related to fluctu
tion probabilities of the empirical ensemble averagesc̄N(t)
ª1/N(n51

N ĉ(n)(t) at time t by

P„c̄N~ t !'mum~ t !,t…;e2N•H„mum~ t !,t…, ~2.18!

where the samplesĉ(n)(t) are all independently chosen from
the ensembleP„•um(t),t…. In other words,H}2 ln Prob,
which is Boltzmann’s famous relation. Because we have
fined probabilities with respect to the measureP„•um(t),t…,
this quantity corresponds to what is in mathematics ca
the relative entropy. The latter is an entropy of probabilit
measures analogous to Gibbs’, but with respect to an a
trary a priori measureP. Thus,
ly
rs

ty

-

rt

-

e-

d

i-

H~QuP!ªE Q lnSQP D . ~2.19!

It is not hard to show that

H„mum~ t !,t…5 min
Q:^c~ t !&Q5m

H~QuP„•um~ t !,t…!. ~2.20!

This is a basic relation between the ‘‘thermodynamic’’ e
tropy H„•um(t),t… and the ‘‘statistical mechanics’’ measur
P„•um(t),t…. It is a form of themaximum entropy principle
@This is indeed a maximum principle in terms of the usu
entropies S„mum(t),t…52H„mum(t),t… and S(QuP)5
2H(QuP).# A good mathematical reference is@9#. As we
shall see later,H* (t)ªH„m(t)um* (t),t… should satisfy the
second law of thermodynamics,dH* (t)/dt,0, whenm* (t)
is the predicted mean history of the moment functions a
m(t) is any other solution of the closure equations su
ciently nearm* (t). The derivatives ofH also have thermo-
dynamic significance. For example, the first derivativ
h„mum* (t),t…ª]H/]m „mum* (t),t… are thethermodynamic
forceswhich give the departure of the momentsm from the
predicted meansm* (t). Note, therefore, thath„mum* (t),t…
50 if and only if m5m* (t). On the other hand, the Leg
endre transform

F„hum~ t !,t…:5sup
m

@m–h2H„mum~ t !,t…#, ~2.21!

is a generalized free energy. It was defined already in Eq
~2.13! above via the logarithm of the ‘‘partition function’
Z„hum(t),t…ª^exp„h–ĉ(t)…&m(t),t .

With this background, let us return to our analysis of t
Rayleigh-Ritz effective action. Equation~2.17! yields imme-
diately a useful expression, complementary to Eq.~2.12!:

G* @c ;m#5E
t0

`

dtF d

dt
h„m~ t !,t…2

]h

]t
„m~ t !,t…

2W„m~ t !,t…GÁ

@c~ t !2m~ t !#,

~2.22!

where we have defined the new vector by matrix multiplic
tion:

W„m~ t !,t…:5G„m~ t !,t…V„m~ t !,t…. ~2.23!

Indeed, it follows from the chain rule and Eq.~2.17! that

d

dt
h~ t !5G~ t !ṁ~ t !1

]h

]t
~ t !. ~2.24!

Because of symmetry ofG, it follows that „G(t)ṁ(t)…Á

5ṁÁ(t)G(t). Thus, we may use the previous relation
write

@ṁ~ t !2V~ t !#ÁG~ t !5F d

dt
h~ t !2

]h

]t
~ t !2W~ t !GÁ

.

~2.25!
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When substituted into Eq.~2.12!, the result is Eq.~2.22!.
This is a more convenient form for variation. Indeed, sett
dG/dmk(t) 50 gives

(
j

G jk@ċ j2ṁj #1(
j

S ]G jk

]t
1

]Wj

]mk
D ~c j2mj !

1(
j

@ṁj2Vj #G jk50, ~2.26!

where the relations~2.17! and ~2.25! have again been em
ployed. Simplifying, we obtain finally

~ċ2V!ÁG1~c2m!ÁS ]G

]t
1

]W

]m D50. ~2.27!

This is the variational equationto determinem(t) for a
given c(t). When it is employed to eliminatem(t) in Eq.
~2.12! or Eq. ~2.22!, the result isG* @c#, the final Rayleigh-
Ritz approximation to the effective action of the mome
variablesĉ(t) in the closure.

One more transformation of the action is useful. We m
write Eq. ~2.12! as the sum of two terms:

G* @c#52E
t0

`

dt@ċ2ṁ#ÁG@c2m#

1E
t0

`

dt@ċ2V#ÁG@c2m#. ~2.28!

In the first term we integrate once by parts, while in t
second we use Eq.~2.27!. This yields

G* @c#5
1

2Et0

`

dt~c2m!ÁF d

dt
G22

]G

]t
2

]W

]m
2S ]W

]m D ÁG
3~c2m!. ~2.29!

Up until this point, no approximation has been made exc
Rayleigh-Ritz. Equation~2.29! is the most convenient form
to calculate the quadratic part of the Rayleigh-Ritz action

C. Quadratic-order action and linear Langevin model

We shall now calculate the quadratic part of the f
Rayleigh-Ritz effective actionG* @c#. An important quantity
which appears is thelinear stability operatorabout a solu-
tion m(t) of the moment-closure equationsṁ5V(m,t), that
is,

A~ t !ª
]V

]m
„m~ t !,t…. ~2.30!

The subscript * shall be used hereafter to indicate that
substitution of the particular solutionm* (t) for given initial
datam0* has been made: thus,A* (t)ª]V/]m „m* (t),t…. It
is easy to relate]W/]m to the linear stability operator. In
fact, from the definition ofW in Eq. ~2.23! it follows that

]Wi

]mj
5G i jk

~3!Vk1G ikAk j , ~2.31!
g

t

y

pt

l

e

where G i jk
(3)(t)5 ]G i j /]mk „m(t),t… denotes the single-time

third-order irreducible correlation function within the PD
Ansatz. Using this function again,

d

dt
G i j 5

]G i j

]t
1(

k
G i jk

~3!ṁk5~] t1ṁ–¹m!G i j . ~2.32!

Then, by means of Eqs.~2.31! and ~2.32!, we can see that

d

dt
G22

]G

]t
2

]W

]m
2S ]W

]m D Á

52
]G

]t
1~ṁ22V!–¹mG2GA2~GA!Á. ~2.33!

Furthermore, usingṁ* 5V(m* ,t), it follows that

2
]G*
]t

1~ṁ* 22V* !–¹mG* 52
]G*
]t

2~V* –¹m!G*

52
d

dt
G* . ~2.34!

The effective action to quadratic order in deviationsdc(t)
ªc(t)2m* (t) from the solutionm* (t) of the moment
equation is then found to be

G
*
~2!@dc#5

1

2Et0

`

dt~dc2dm!ÁF2
d

dt
G* 2G* A*

2~G* A* !ÁG~dc2dm!.

~2.35!

In this expression, the quantitydm(t)ªm(t)2m* (t) is
to be determined in terms ofdc(t) from the variational
equation~2.27! linearized about the solutionc* (t)5m* (t).
It is convenient to rewrite Eq.~2.27! as

ċ2V~c,t !1@V~c,t !2V~m,t !#

1CF]G

]t
1S ]W

]m D ÁG~c2m!50. ~2.36!

Using again Eqs.~2.31! and~2.32!, it is then straightforward
to linearize this equation, yielding the variational equati
for dm(t):

~dċ2A* dc!22Q* G* ~dc2dm!50, ~2.37!

where the definition has been introduced

2Q*ª2C* @Ġ* 1G* A* 1A
*
ÁG* #C*

5Ċ* 2A* C* 2C* A
*
Á . ~2.38!

Note thatL*ª2A* C* is the Onsager matrix, in terms of
which the linearized closure equation may be written
force-flux form: dċ52L* dh. Then Eq.~2.38! may be re-
stated as
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Q* 5
1

2
Ċ* 1L

*
s , ~2.39!

with L
*
s
ª(L* 1L

*
Á)/2 denoting the symmetric part of th

matrix L* .
One may now obtain a final form forG

*
(2)@dc# by elimi-

natingdm(t) from Eq.~2.35! by means of Eq.~2.37! and by
using the definition~2.38! of Q* . One obtains

G
*
~2!@dc#5

1

4Et0

`

dt~dċ2A* dc!ÁQ
*
21~dċ2A* dc!.

~2.40!

This is the final result. One observes that it has the form
anOnsager-Machlup action. That is, the Rayleigh-Ritz resu
for G

*
(2)@dc# is formally equivalent to the effective actio

that would be obtained for the solution of a linear Lange
modeldc1(t) of the fluctuation variabledĉ(t). To be pre-
cise, the model stochastic equation is

dċ15A* ~ t !dc11q~ t !, ~2.41!

whereq(t) is a random force, white noise in time, with ze
mean and covariance

^q~ t !qÁ~ t8!&52Q* ~ t !d~ t2t8!. ~2.42!

Note, in this context, that Eq.~2.39! is the time-dependen
generalization of thefluctuation-dissipation relation~of the
first type!, connecting the noise covariance matrixQ* and
the symmetric~dissipative! part L

*
s of the Onsager matrix

For details, see Sec. VI.
To understand the significance of the linear Lange

model, we must recall some basic facts about the effec
action itself. As noted earlier, the effective action is a ge
erating functional for irreducible multitime correlation fun
tions. That is, thekth-order irreducible correlator is given b

G i 1••• i k
~k! ~ t1 , . . . ,tk!5

dkG

dc i 1
~ t1!•••dc i k

~ tk!
@m* #.

~2.43!

In particular, these coincide with functional Taylor coef
cients in the series expansion~1.10!. Furthermore, the irre-
ducible correlators of order up tok determine all of the
cumulants—or connected correlators—Ci 1••• i k

(k) (t1 , . . . ,tk)

up to the same orderk. @For example, fork52,

Ci 1i 2
~ t1 ,t2!5~G21! i 1i 2

~ t1 ,t2!;

for k53,

Ci 1i 2i 3
~ t1 ,t2 ,t3!5 (

j 1 j 2 j 3

E ds1E ds2E ds3Ci 1 j 1
~ t1 ,s1!

3Ci 2 j 2
~ t2 ,s2!Ci 3 j 3

~ t3 ,s3!

3G j 1 j 2 j 3
~s1 ,s2 ,s3!;

etc. See@5#.# From these two facts we see that knowledge
the Taylor series ofG* @c# up to terms of degreek is equiva-
f

n
e
-

f

lent to knowledge of the Rayleigh-Ritz predictions for a
multitime correlators up to orderk. In particular, knowledge
of the quadratic term in the effective action,G

*
(2)@dc#, is

equivalent to knowledge of all two-time correlators as p
dicted by Rayleigh-Ritz. Because knowledge of the line
model is equivalent to knowledge of that quadra
‘‘Onsager-Machlup’’ part, the key conclusion that we dra
is thatthe linear Langevin model is the unique such mode
reproduce exactly all the two-time correlators predicted
Rayleigh-Ritz.However, for correlators of higher than se
ond order, the two will in general disagree.

A simple observation which underlines this last point
the following: the solutiondc1(t) of the linear Langevin
model is always aGaussianrandom function, while thetrue
fluctuation variabledĉ(t) is in generalnon-Gaussian. Thus,
although higher-order cumulants than second are zero for
Langevin solutiondc1(t), they are generally nonzero fo
the true fluctuation variabledĉ(t). Of course, it is clear tha
for any random processdĉ(t) there is a Gaussian random
processdc1(t) which has the same mean and varian
~when those exist!. In fact, there is only one such Gaussia
process, in the sense that its distribution on the path spac
histories is uniquely determined. This result is sometim
called the Khinchin-Crame´r theorem. One way to construc
such a Gaussian process is via the central limit theorem

The connection of the linear Langevin model to the ce
tral limit theorem is quite deep. In fact, the precise empiri
significance of the linear Langevin model is that its pred
tions should be valid for the normalized sum variable:

dĉN~ t !ª
1

AN
(
n51

N

dĉ~n!~ t !, ~2.44!

in the limit N→`, where the sum is overN independent,
identically distributed samples. To prove this fact, recall th
the effective action is a fluctuation potential for the empiric
average overN independent samples, in the sense of E
~1.9!. Now we consider the probability of a small fluctuatio
value differing from the ensemble mean by terms of ord
O(1/AN). That is, we consider fluctuations

c~ t !5m* ~ t !1
dc~ t !

AN
, ~2.45!

for dc(t)5O(1). Substituting Eq.~2.45! into Eq. ~1.9! and
employing the functional Taylor expansion~1.10! of G@c#, it
is then straightforward to show that

Prob„dĉN~ t !'dc~ t !…;expF2G~2!@dc#1OS 1

AN
D G .

~2.46!

In the limit asN→` we arrive at the stated result. It is clea
that the distribution ofdĉN(t) is Gaussian in the limit.@In
fact, we have just repeated above one of the standard pr
in the literature of the central limit theorem.# Furthermore,
G (2)@c# acts as the Onsager-Machlup action of the limiti
Gaussian variable, hence described also by the equiva
linear Langevin model.

It is extremely important to emphasize that the existen
of such a linear Langevin model has only been forma
established, and only for the Rayleigh-Ritz approximati
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G* @c#. In general, the central limit theorem only guarante
that a Gaussian process should exist with the same mean
covariance and not necessarily a process obtained fro
stochastic differential equation or, for that matter, even
Markov process. It is thus a very striking prediction of t
Rayleigh-Ritz method with a ‘‘Markovian’’Ansatz—and far
from obviously true—that the two-time correlations shou
be reproducible by such a linear Langevin model. Inde
this prediction can fail in a very striking way: the noise c
varianceQ* (t) given formally by Eq.~2.38! may turn out
not to be non-negative! Of course, non-negativity is a fun
mental requirement for any true covariance function. If
fails, then the ‘‘linear Langevin model’’ exists only in som
formal sense and there is no actual stochastic process w
realizes the model. Put another way, the Rayleigh-Ritz
proximation G* @c# might fail to satisfy therealizability
properties requisite for any true effective action. The re
evant realizability properties~positivity, unicity of mini-
mizer, convexity! have been discussed at length elsewh
@1,10#. It is easy to see that these properties ofG* @c# will
hold, at least forc(t) close to the mean historym* (t), if and
only if G

*
(2)@dc#>0, with strict inequality for alldc(t)Þ0.

Furthermore, examination of the Onsager-Machlup act
~2.40! shows that realizability ofG

*
(2)@dc# holds if and only

if the formal noise covarianceQ* (t) appearing in the Lange
vin model is positive.

III. A SIMPLE EXAMPLE

It is interesting to compare the linear Langevin mod
with the full nonlinear Rayleigh-Ritz approximation. In ge
eral, this should allow one to assess the limitations of
s
nd
a

a

,

-
t

ich
-

e

n

l

e

Langevin model for any given problem, in particular, to a
sess quantitatively how large are the corrections to its p
dicted Gaussian statistics. To illustrate the comparison of
Langevin dynamics and full Rayleigh-Ritz approximatio
we will discuss here very briefly a three-mode model alrea
considered in@10,11#. This is a simple ‘‘one-step cascade
model of dissipative turbulent dynamics, originally intro
duced by Lorenz in 1960@12#. The dynamics are just the
Euler equations of a top, but stochastically driven and l
early damped. The three modes arex5(x1 ,x2 ,x3), of which
the first is the driven, unstable mode, and the second two
stable, damped modes. More specifically, the equations
motion are given by

ẋi5Aixjxk2n ixi1 f i , ~3.1!

with i , j ,k a cyclic permutation of 1,2,3. Note thatA11A2
1A350 for conservation of energy by the nonlinear term
the damping constants aren i.0, i 51,2,3, and the random
driving forces are zero mean with covariance

^ f i~ t ! f j~ t8!&52k id~ t2t8!, ~3.2!

all k i.0, i 51,2,3. A ‘‘x2’’ PDF Ansatzwas proposed for
this system by Bayly, which leads to the quasinormal clos
equations. For full details of the model and closure, we re
to @10,11#. Here we will simply remind the reader that th
basic moments in the quasinormal closure are the th
modal energiesÊi5(1/2)xi

2 , i 51,2,3 and the triple mo-

ment T̂5x1x2x3, which gives the energy transfer out of th
unstable driven mode and into the stable, damped mode
the notations of this paper, the closure dynamics is given
ṁ5V(m) with
e key
ortant

ine.
e

of
m5S E1

E2

E3

T

D and V~m!5S A1T22n1E11k1

A2T22n2E21k2

A3T22n3E31k3

4~A1E2E31A2E1E31A3E1E2!2~n11n21n3!T

D . ~3.3!

Although very simple, this model and closure will illustrate several key features of our method. In addition to th
comparison of the full Rayleigh-Ritz approximation and the linear Langevin model, it will allow us to discuss some imp
issues concerning realizability.

The parameters of the linear Langevin model arising from thex2 closure for the three-mode system are easy to determ
The general form of the model is given in Eqs.~2.41! and~2.42!. The dynamical matrixA ~here time-independent, since w
consider only the statistical steady state! is given by the linearization of the closure equation,A5]V/]m, or

A5S 22n1 0 0 A1

0 22n2 0 A2

0 0 22n3 A3

4~A2E31A3E2! 4~A1E31A3E1! 4~A1E21A2E1! 2~n11n21n3!

D . ~3.4!

To obtain the matrixA* appearing in the Langevin model for a specific situation, the corresponding momentsm* satisfying
the fixed-point conditionV(m* )50 must be substituted. The noise covarianceQ can be calculated as the symmetric part
the Onsager matrixL , and the latter is derivable fromL52AC, once the matrix covarianceC of the moment functionsc is
known. The latter is provided by the PDFAnsatz, in this case Bayly’sx2 Ansatz. A simple calculation in that case gives
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C5S 2E1
21

3

2
T4/3

1

2
T4/3

1

2
T4/3 2E1T13T5/3

1

2
T4/3 2E2

21
3

2
T4/3

1

2
T4/3 2E2T13T5/3

1

2
T4/3

1

2
T4/3 2E3

21
3

2
T4/3 2E3T13T5/3

2E1T13T5/3 2E2T13T5/3 2E3T13T5/3 8E1E2E314~E11E21E3!T4/3119T2

D . ~3.5!
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Again, the matricesC* and, therefore,Q* are obtained by
substituting the fixed-point moment valuesm* . It is worth
emphasizing thatV and C are theonly statistical inputs re-
quired from the PDF ansatz at the level of the linear Lan
vin model. If one is not interested to carry out a full nonli
ear Rayleigh-Ritz calculation, then these are the o
quantities that need be provideda priori to construct the
linear model.

For the steady-state dissipative cascade of the three-m
dynamics, it is quite easy to calculate bothA* andQ* . We
have done so numerically with the same choice of param
values of the three-mode model as in our earlier w
@10,11#. The results given to four decimal places are

A* 5S 20.002 0.000 0.000 2.000

0.000 22.000 0.000 21.000

0.000 0.000 22.000 21.000

22.001 20.996 20.996 22.001

D ~3.6!

and

Q* 5S 3.385 0.545 0.545 26.868

0.545 0.246 20.796 1.815

0.545 20.796 0.246 1.815

26.868 1.815 1.815 8.428

D .

~3.7!

The matrixA* can be easily checked to have all eigenvalu
with negative real parts. This indicates that the closure fi
point m* is linearly stable. However, it turns out that th
putative noise covarianceQ* has eigenvalue spectrum
13.426, 1.042, 1.031, and23.194. One of the eigenvalue
is negative. Thus, there is a breakdown of realizability in
Langevin model for this dissipative cascade state.

Such a breakdown is also known to occur frequently
applications of the POP method, which we shall discuss
some length in Sec. V. For example, Penland in her fun
mental work@6# obtained negative eigenvalues forQ* in a
POP analysis of a different quadratically nonlinear thr
mode system, the chaotic Lorenz model. Her interpreta
of this realizability breakdown is that it was due to nonli
earities of the Lorenz model that could not be modeled
white-noise random forces. This may be true, but it is
necessarily an indication that the linear Langevin model f
completely, for all statistics of the system. In our earl
work @10,11# we have pointed out that thex2 Ansatzfor our
three-mode system—despite its leading to a nonrealiz
-

y

de

er
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s
d

e

at
a-

-
n

s
t
s
r

le

linear Langevin model—nevertheless produces very g
quantitative predictions for several statistics. For examp
E2 , E3 , andT are all predicted to within about 0.3% an
only the value ofE1 is badly underpredicted~by a factor of
3!. Thus, simply labeling the model as ‘‘bad’’ because
leads to a nonpositive noise covarianceQ* would be coun-
terproductive, for good predictions would then be thrown o
with the bad ones. What is needed are realizability diagn
tics that are more focused and selective, which can help
pinpoint precisely which predictions are good and which
bad.

In @10,11# we have proposed that such diagnostics in
statistical steady state are provided by theeffective poten-

tials. For any dynamical variableẐ(t) of the system, the
effective potentialV(z) is a fluctuation potential for the em
pirical time averageZ̄Tª1/T *0

TdtẐ(t). That is,

Prob~ Z̄T'z!;exp„2TV~z!…, ~3.8!

in the limit as T→`. Because the effective potential is
measure of likelihood of fluctuations in the very time ave
age used empirically to define the mean statistics, it is pl
sible that it should be quite sensitive to the failure of t
closure for individual variables. The effective potential c
be obtained analytically via the time-extensive limit of th
effective action

V~z!ª lim
T→`

1

T
G@zT#, ~3.9!

in which

zT~ t !:5H z for 0,t,T

0 otherwise.
~3.10!

Thus, it is easy to adapt the Rayleigh-Ritz algorithm to c
culate the effective potentials. In@10,11# we have applied the
full nonlinear Rayleigh-Ritz algorithm in the three-mode sy
tem using thex2 Ansatzto calculate the effective potential
of modal energiesE1 andE2 and of the triple momentT. It
was found there that the potentialsVE2

andVT are positive
and convex, satisfying realizability, whereas the poten
VE1

was negative and convex, i.e., realizability-violating.
this case, therefore, the effective potentials were—
conjectured—successful in discriminating the good pred
tions from the bad.

Here we wish to calculate these same effective potenti
but using just the linear model rather than the full Rayleig
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FIG. 1. Approximate effective potentials o
E1: Rayleigh-Ritz vs Langevin model. The nom
nal physical units are@V#51/~time! and @E1#5
(length/time)2. However, the quantities hav
been nondimensionalized by time and leng
scales appropriate to the two unstable modes,
by settingn25n351 for @n i #51/~time! and A2

5A3521 for @Ai #51/~length!.
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Ritz approximation. In general, a linear Langevin dynam
such as Eq.~1.5! gives easily the joint effective potential o
all variablesĉ therein, via the time-extensive limit of th
Onsager-Machlup action~1.7!. Thus, from Eq.~2.40! one
obtains directly the quadratic term

V
*
~2!~c!5

1

4
K* :dcdc, ~3.11!

with dc5c2m* and K*ªA
*
ÁQ

*
21A* . Here the dynami-

cal matrix A* and noise covarianceQ* in the Langevin
model are evaluated at the steady-state valuesm* of the
moment averages. The effective potential of any single
of the moment variables can then be obtained byminimizing
over the others:

V
*
~2!~c i !5 min

c j , j Þ i
V

*
~2!~c!. ~3.12!

Since the joint effective potential~3.11! is a simple quadratic
form, this minimization is easy to carry out. In fact, ifK i i is
*

s

e

the minor matrix obtained fromK* by deleting thei th row
and column andk

*
i is the vector obtained by deleting th

elementk
*
i i from the i th column, then

V
*
~2!~c i !5

1

4
k

*
i i dc i

2 , ~3.13!

with k
*
i i
ªk

*
i i 2(K

*
i i )21:k

*
i k

*
i . These last formulas allow a

direct computation of the effective potentials of mome
variables from the parameters appearing in the Lange
model.

In Figs. 1–3 we have plotted the parabolic effective p
tentialsVE1

, VE2
, andVT obtained in this manner from th

linear Langevin model corresponding to thex2 Ansatz. The
plots cover exactly the same range as those in@10,11#, where
the potentials were calculated by the full nonlinear Rayleig
Ritz algorithm. For comparison, we have plotted both pa
of potentials together in Figs. 1–3, the new ones using
linear Langevin model and the earlier ones from the f
Rayleigh-Ritz approximation. Two points deserve to be e
f
-

FIG. 2. Approximate effective potentials o
E2: Rayleigh-Ritz vs Langevin model Same re
marks as for Fig. 1.
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FIG. 3. Approximate effective potentials ofT:
Rayleigh-Ritz vs Langevin model. The nomina
physical units ofT are (length/time)3, but it has
been nondimensionalized through the length a
time scales of the unstable modes, as describe
the caption of Fig. 1.
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phasized. First, the computational expense of the Lang
model calculation is considerably lower than the f
Rayleigh-Ritz calculation. Each of the separate symbols
the Rayleigh-Ritz effective potential curves was obtained
solving numerically a fixed point problem, coming from
perturbed closure equation. On the other hand, the Lang
model calculation required the solution ofjust one fixed
point problem, to determine the mean moment values at
bottom of the potentials. Those are all that are needed
calculate the curvaturesk

*
i i and hence the quadratic potenti

curves via Eq.~3.13!. Thus, the number of fixed point sym
bols appearing in each of the Rayleigh-Ritz curves is a qu
titative measure of the numerical superiority of the Lange
model calculation. Second, we see that the two calcula
schemes lead to essentially equivalent results in this
ample, at least for fluctuations up to 20% of the mean va
At least in this range, essentially the same predictions
fluctuations are obtained for the linear model as for the
Rayleigh-Ritz approximation, and at greatly reduced
pense.

Of course, over a wider range of fluctuations one sho
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e
to

n-
n
n
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d

no longer expect that the two calculation schemes will agr
In general, the full Rayleigh-Ritz calculation should captu
important non-Gaussian fluctuation effects that are missed
the simpler Langevin model. In Figs. 4 and 5 the two rea
able potentials in the three-mode example are plotted o
wider ranges,VE2

andVT , calculated again both by the fu

Rayleigh-Ritz method and by the linear Langevin mod
Clearly, for fluctuations 1–2 times the means, the f
Rayleigh-Ritz calculation yields nonparabolic potentials
sociated to non-Gaussian statistics. The range where the
calculations agree gives ana priori indication of the size of
the fluctuations for which the linear model may be trusted
the case ofVE2

we see that fluctuations;40% of the mean

are well-described by the linear model, while forVT the per-
centage is;60%. Of course, it is an important question n
just whether the Rayleigh-Ritz calculation gives different
sults, but whether itimprovesupon the predictions of the
linear model. In @10,11# it was already shown that th
Rayleigh-Ritz effective potentialsVE1

and VT give quite
good quantitative results for fluctuations over the sma
f
-

FIG. 4. Approximate effective potentials o
E2 over a wider range: Rayleigh-Ritz vs Lange
vin model. Same remarks as for Fig. 1.
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FIG. 5. Approximate effective potentials ofT
over a wider range: Rayleigh-Ritz vs Langev
model. Same remarks as for Fig. 3.
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ranges plotted in Figs. 2 and 3. However, there the
Rayleigh-Ritz and linear Langevin models substantia
agree. It is difficult to get accurate results for effective p
tentials in the wider ranges directly from numerical simu
tion of the three-mode dynamics, because of the increa
rarity of those large fluctuation events. Thus, we will n
show directly an improved agreement of the full Rayleig
Ritz calculation for the effective potentials in the wid
ranges. Nevertheless, one important observation can
made. Becausex2

2.0 in everyrealization, there must be zer
probability for events withE2,0. For this reason, the tru
effective potentialVE2

must blow up, i.e., diverge to positiv

infinity, as the negative values ofE2 are approached. How
ever, because the effective potential predicted by the lin
Langevin model is a simple parabola, it will intersect t
ordinate axisE250 at somefinite value of V. It will thus
predict some positive probability of seeing negative valu
E2,0 ~as would be true if the fluctuationsdE2 were indeed
Gaussian random variables.! However, as can be seen fro
Fig. 4, the full Rayleigh-Ritz result forVE2

is rising faster

than the parabolic potential from the linear model asE2↓0.
This is the correct tendency, as indicated above, and re
sents a qualitative improvement of the full Rayleigh-Ritz c
culation. In general, one may expect that the full Rayleig
Ritz calculation will give a more refined result, because
uses more information both from the dynamics and from
PDF Ansatzthan the Langevin model.

Nevertheless, it is plausible to believe—again quite
general—that the quadratic part will be the term which dom
nates the effective potential sufficiently close to the mi
mum. The only way to violate this expectation is to ha
k

*
i i 50 andV(c i)5O(dc i

3). Barring such cases of acciden
tal degeneracy, one can see that the quadratic termV

*
(2) will

well approximate the fullV* sufficiently near to the mini-
mum. In that regime, the linear Langevin model shall a
count for the main tendencies of the full theory. In particul
the Rayleigh-Ritz effective potential will satisfy necessa
realizability conditions in the vicinity of the mean, when th
Langevin model itself is realizability. Thus, realizability o
the Rayleigh-Ritz effective potential is, close to the me
ll
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-
ng
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n

history, equivalent to the realizability for a linear Langev
model. It is thus particularly important to understand t
physical hypotheses underlying the validity of such a mod

IV. A PHYSICAL DERIVATION OF THE LINEAR
LANGEVIN EQUATION

We shall now explain how exactly the same linear Lang
vin model can be obtained from a more physically transp
ent argument. Indeed, we shall show that the previous re
for the quadratic order action can be recovered from a sin
physical hypothesis: It is a basic assumption of the PD
based moment closure methodology that, to characteriz
probability distribution in phase space, it is enough to kn
the mean values it assigns to the moment functions. In
case, the distribution is assumed to be described with s
cient accuracy by the PDFAnsatzwhich yields the same
mean values for those moment functions. Let^•uĉ(s),
s,t& denote the expectation over the conditioned ensem
given the past history$ĉ(s),s,t% of the moment variables
before timet. Our basic assumption is that the PDF Ansa
can be employed as well as an approximation for such
ensemble conditioned on the past values.More specifically,
we shall assume that the approximation is valid that

^V̂~ t !uĉ~s!,s,t&'^V̂~ t !&ĉ~ t !,tªV„ĉ~ t !,t…. ~4.1!

This is just a mathematical restatement of the hypothe
Indeed, the conditioned ensemble yields the expected va

^ĉ(t)uĉ(s),s,t&5ĉ(t) and P„•;ĉ(t),t… is thus the choice
of the PDF Ansatzwhich matches those expected value
@Note thatP„•;ĉ(t),t… really meansP(•;m,t)um5ĉ(t) , i.e.,
the average over phase space with respect toP(•;m,t) is
always taken first, and then, subsequently, therandomvari-
ableĉ(t) is substituted form.# We shall employ this hypoth-
esis mainly for the regime of small fluctuations, where

V„ĉ~ t !,t…5V„m* ~ t !,t…1A* ~ t !dĉ~ t !1O~dĉ2!.
~4.2!
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We have setdĉ(t)ªĉ(t)2m* (t), the fluctuation variable.
We now consider the consequences of our hypothesis

the dynamics of the fluctuations. We may write, without a
approximation,

] tĉ~ t !5V̂~ t !5^V̂~ t !uĉ~s!,s,t&1q̂~ t !, ~4.3!

where the above equation is simply an implicit definition
the quantityq̂(t):

q̂~ t !ªV̂~ t !2^V̂~ t !uĉ~s!,s,t&. ~4.4!

It follows directly from this definition that̂ q̂(t)&50 and
that

^ĉ~s!q̂Á~ t !&50 ~4.5!

for all s,t. If we now invoke our hypothesis in Eq.~4.3!,
then we see that

] tĉ~ t !'V„ĉ~ t !,t…1q̂~ t !. ~4.6!

In other words, within the approximation considered, t
random moment functionsĉ(t) satisfy the same closur
equations as the mean valuesm(t)5^ĉ(t)& t , but with an
additional stochastic noiseq̂(t) which is decorrelated from
earlier values of the moment functions. This is very simi
to the regression hypothesismade by Onsager, according
which fluctuations should decay on average according to
same macroscopic equation obeyed by the means. It is c
that it is exactly at this point in the heuristic derivation tha
‘‘Markovian’’ approximation has been made. It was emph
sized by Onsager and Machlup~ @3#, p. 1509! that the regres-
sion hypothesis is, for a Gaussian random process, actu
equivalent to the Markov property.

In the regime of small fluctuationsdĉ(t), we may derive
a more specific formulation. There, to linear order accura
the equation following from the hypothesis is

d ċ̂~ t !'A* ~ t !dĉ~ t !1q̂~ t !. ~4.7!

Because of the linear relation, it is clear that consiste
requires the forceq̂(t) to be white noise in time. Indeed, Eq
~4.7! can be solved explicitly, as

dĉ~ t !5G* ~ t,t0!dĉ~ t0!1E
t0

t

G* ~ t,r !q̂~r !dr, ~4.8!

where we have introduced the~retarded! matrix Green’s
function

G* ~ t,t0!ªT expF E
t0

t

A* ~r !drGu~ t2t0!. ~4.9!

It then follows by substitutingdĉ(s) from Eq.~4.8! into Eq.
~4.5! that

E
t0

s

G* ~s,r !^q̂~r !q̂Á~ t !&dr50 ~4.10!
or
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for all s less thant. Differentiating with respect tos then
gives

^q̂~s!q̂Á~ t !&50 ~4.11!

for all s,t. Thus, we see that the force must bed-correlated
in time:

^q̂~s!q̂Á~ t !&52Q* ~ t !d~s2t !. ~4.12!

@In principle the matrixQ* (t) in Eq. ~4.12! could be a dif-
ferential operator with a finite-degree polynomial depe
dence on] t . We make the simplest assumption thatQ* (t) is
an ordinary matrix function.# The noise covariance functio
Q* (t) is uniquely determined if we assume, consistent w
our hypothesis, that the fluctuation covarianceC(t)
ª^dĉ(t)dĉÁ(t)& t is the same asC* (t) given by the PDF
Ansatz. In that case, the noise covariance is uniquely o
tained from the relation

2Q* 5Ċ* 2A* C* 2C* A
*
Á . ~4.13!

Needless to say, we have now arrived at exactly the sa
linear Langevin model that we obtained before from t
Rayleigh-Ritz approximation with a ‘‘Markovian’’Ansatz.
The present derivation should make clearer the physical
sumptions involved in that more formal derivation.

The quadratic Onsager-Machlup term in the Rayleig
Ritz effective action will dominate in the vicinity of the
mean history, barring degenerate cases where the quad
term vanishes. As seen earlier, the realizability of the eff
tive action in that region will be essentially equivalent to t
realizability of the linear Langevin model~2.41!. The latter
property is really a consistency check on the validity of t
physical hypotheses underlying the Langevin model, in p
ticular the consistency of employing the PDFAnsatzfor an
ensemble conditioned on the past history. In general,
depends upon the particular situation considered. In part
lar, enough variables must be included in the moment c
sure that the Markovian assumption inherent in the appro
mation is justifiable.

This is perhaps the proper place to remind the reader
if a vector Markov processc(t) is divided into two subsets

@c̄(t),c8(t)#, then, in general, the separate subproces
c̄(t) and c8(t) will not be Markov. Thus, if the Rayleigh-
Ritz effective action is determined not for thecompleteset of
moment variablesc(t) but instead only for a subsetc̄(t),
then it will not ordinarily have the Onsager-Machlup form
However, there are special cases in which this is true.
example, suppose that the PDFAnsatzis such that the two
variable sets are uncorrelated at equal times:

^c8~ t !c̄Á~ t !&2^c8~ t !&^c̄Á~ t !&5O. ~4.14!

Suppose also that the closure equation of the ignored se
momentsm8(t) is independent of the retained setm̄(t), that
is,

ṁ8~ t !5V8„m8~ t !,t…, ~4.15!
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whereV8 is a function ofm8 alone. This would be realistic
for cases such as fluid turbulence with a passive scalar
taminant. In that case, the exact velocity dynamics is in
pendent of the passive scalar. In cases where these two
ditions hold, the Rayleigh-Ritz actionG* @c̄# would still
have a quadratic part of the Onsager-Machlup form. Thi
straightforward to show by arguments such as those u
before. Needless to say, the two conditions are quite res
tive.

V. RELATION TO PRINCIPAL OSCILLATION PATTERN
„POP… ANALYSIS

There is a very close relation of the foregoing theory w
the principal oscillation pattern~POP! analysis, particularly
as it was developed by Penland@6#. In her approach, the PO
method is a procedure to derive directly from the empiri
time-series data for a selected set of variables the lin
Langevin dynamics whose stochastic solution has the s
mean and covariance as those empirically derived, if suc
Langevin model exists. Her method can be explained
terms of the equations used above. Indeed, assuming th
lidity of a Langevin equation such as Eq.~1.5!, it is easy to
show that, for anyt.t8,

d

dt
C~ t,t8!5A~ t !C~ t,t8!, ~5.1!

whereC(t,t8)ª^ĉ(t)ĉÁ(t8)& is theempirical two-time co-
variance matrix. Thus, the linear dynamical matrixA(t) can
be obtained as

A~ t !5
d

dt
C~ t,t8!U

t85t2

C21~ t !, ~5.2!

where, as before,C(t)ªC(t,t). Once A(t) is known, the
FDT relation analogous to Eq.~4.13! can be used to deter
mine Q(t) from A(t) and C(t). This is essentially the pro
cedure proposed by Penland to deduce the Langevin m
from the data, with appropriate changes having been mad
allow for the general case of time-dependent statistics c
sidered here.

A remark on terminology is in order. Although the proc
dure outlined above is the most natural generalization to
time-dependent case, the rationale for the term ‘‘POP’’ is
longer apparent. In fact, the ‘‘principal oscillation pattern
in the standard approach for stationary time series are
~right! eigenvectorsui , i 51, . . . ,n of the linear propagato
G(t)ªetA, for somet.0. The corresponding eigenvalue
are of the formm i(t)5etl i in terms of the eigenvaluesl i of
A. If a linear Langevin model is assumed valid for the tw
time covarianceC(t,t8)ªS(t2t8), then the propagator ca
be obtained fromG(t)5S(t)S21(0). In the standard POP
method, the linear dynamical matrixA is reconstituted by
taking l iª1/t lnmi(t) and then writing

Aª(
i 51

n

l iuivi
Á , ~5.3!

wherevi are the corresponding left eigenvectors, satisfy
the biorthogonality relationvi

Áuj5d i j . ~It has been assume
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here that complete sets of eigenvectors exist, which ho
generically.! In the limit ast→0, it is not hard to see tha
this procedure is equivalent to the one we described ab
when the latter is specialized to the case of stationary t
series. There are good reasons why the ‘‘POP’’ method
employed in meteorology and climatology, rather than
method we have described. In those problem areas, the r
lution of observation times is generally too coarse to allow
numerical evaluation of the necessary derivatives for our
mula ~5.2!. Thus, the above spectral decomposition is
quired. On the other hand, it should be emphasized that c
struction of the linear Langevin model in the general tim
dependent case willrequire time derivatives. One can stil
define ‘‘time-dependent POP’s’’ as eigenvectors of the tw
time Green’s functionG(t,t8), but there is no simple opera
tion analogous to taking the logarithm to allow one to co
struct therefrom the dynamical matrix.

Of course, a Langevin model need not exist at all,
pointed out also by Penland. There are some basic con
tency properties that must be satisfied, if this is to be p
sible. First, the computed noise covarianceQ(t) must be
positive-definite. This is the same type of realizability co
dition that was encountered in the Rayleigh-Ritz approach
is a qualitative check of the Langevin model assumpti
basically amounting to a statistical stability condition with
that framework. A more stringent and quantitative prope
for validity of a linear Langevin model is deduced from th
inversion formula~5.2!. This must hold forall t 8,t. In gen-
eral, the right-hand side of Eq.~5.2! defines an objectA(t,t8)
for t85t2t,t which will have a nontrivial dependenc
upon the time lagt:

A~ t,t8!ª
d

dt
C~ t,t8!•C21~ t,t8!. ~5.4!

To be consistent with a linear Langevin model, howev
there should be no such dependence. Hence, the degr
constancy ofA(t,t8) in the lag timet is a quantitative mea-
sure of the validity of the linear Langevin modeling assum
tion. This is Penland’s ‘‘t test’’ @6#. We note that there is
generally somet dependence in numerical applications
POP, even for time seriesgeneratedby a Langevin model,
with reliability of the results degrading seriously for ve
large values oft.

On the other hand, there is also a peculiarity of the ‘‘ze
lag’’ or t50 prescription embodied in Eq.~5.2!, which de-
serves to be emphasized. If that definition ofA(t) is substi-
tuted into the FDT relation~4.13!, one finds, as a
consequence of the calculus identity

d

dt
C~ t,t !5

d

dt
@C~ t,t8!1C~ t8,t !# t85t , ~5.5!

for covariance functions which are continuously differe
tiable, that

Q~ t !5
1

2

d

dt
@C~ t,t !2C~ t,t8!2C~ t8,t !# t85t2[O.

~5.6!
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That is, the noise covariance vanishesidentically at each
instant t. Of course, this shows that the matrixA(t,t8) de-
fined by Eq.~5.2! really does depend upon lag timet in a
special way, under the above continuity assumption on
covariances. In the Langevin model itself the assumptio

false, since C(t,t8)5C(t)2@Ċ(t)1L (t)#(t2t8)1O„(t
2t8)2

… for t.t8 but C(t,t8)5C(t)1LÁ(t)(t2t8)1O„(t
2t8…2) for t,t8. Thus, the Langevin model covarianc
have different values of time derivatives from the right a
the left. However, it will often be the case that input empi
cal covariances will have, approximately, continuous first
rivatives and then the computed noise will nearly vani
Already in the classical Onsager-Machlup theory there i
tricky issue of how such time derivatives should even
calculated. As discussed by those authors@3# ~and at greater
length by Onsager in@13#, pp. 418 and 419!, the increment
dt for calculating time derivatives should be small compa
to macroscopic relaxation times, but nevertheless large c
pared to microscopic~e.g., mean-free! times. If such time
scales are not well-separated, as is often the case, then
condition can only be marginally satisfied. In our case,
proper choice of this increment is related to the optim
choice of time lagt. Because the true dynamical matrixA(t)
does not depend upont at all ~assuming it exists!, it may be
better to choose the valuet* at which the dependence
smallest, according to a ‘‘principle of minimal sensitivity.
That is, rather than the zero-lag prescription~5.2!, it may be
better to takeA* (t)ªA(t,t2t* ), wheret* is the value of
the lag which minimizes some matrix normi (d/dt) A(t,t
2t)i . These issues belong to the general rubric of POP p
tice, and we shall not discuss them further here.

Although the Rayleigh-Ritz and POP methods are see
be closely related, they have almost opposite points of vi
The Rayleigh-Ritz approach is ana priori theoretical
method, whereas the POP approach isa posterioriand em-
pirical. That is, the Rayleigh-Ritz method uses the unde
ing dynamical equations of motion computationally, in co
junction with physically inspired guesses for the syst
statistics. Thus, it deduces the linear Langevin model with
any direct empirical input~aside from experimental knowl
edge which may have been exploited to develop suita
PDF Ansätze for the problem!. On the other hand, the PO
method makes no use of the dynamical equation of mot
and, indeed, could be applied to time series generated
very different means than a dynamical equation. POP
blind to theoretical considerations, except through the cho
of relevant variablesĉ(t) to be used in the analysis. Becau
the two approaches have such different philosophies but
a close formal relationship, they should be quite complem
tary in assaulting a given problem. In both cases, a lin
Langevin model is obtained which is supposed to reprod
faithfully all first- and second-order correlators of the s
lected set of variables. Thus, the Langevin model dedu
theoretically by the Rayleigh-Ritz approximation may
compared directly with that deduced from the experimen
data via POP. On the other hand, a successful applicatio
the empirical POP procedure for a given set of variable
with ‘‘success’’ meaning here that realizability of the noi
covariance is satisfied and that lag dependence of the
duced matrixA(t,t8) is weak—would imply the possibility
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of carrying out a successful Rayleigh-Ritz approximati
with the same set of variables.

Although POP is ana posteriorimethod, relying upon a
substantial empirical input, it has predictive power. This c
pability rests upon a basic hypothesis: that the POP Lang
model, while constructed only to reproduce partially t
second-order statistics, may also be used to predict o
statistical properties of the system with some accuracy
particular, quantities such as transition probability densit
P(c,tuc0 ,t0) can be deduced from the POP Langev
model. For many problems of weather and climate pred
tion, such probabilities would yield crucial information. Fo
example, a measure of the spread of the predictions, suc
Penland’srelative discrepancy,

d~ t,t0!ª
^iĉ~ t !2G~ t,t0!ĉ~ t0!i2&

^iĉ~ t0!i2&
, ~5.7!

can be estimated. This quantity is itself second-order, but
one used in the derivation of the POP Langevin model a
thus not one that the model is guaranteed to predict succ
fully for arbitrary time lagst5t2t0.

The Rayleigh-Ritz method has the potential for super
predictive ability, particularly with regard to non-Gaussia
statistics and large fluctuations. As we have noted, the
Rayleigh-Ritz calculation predicts nonvanishing higher-ord
cumulants of the moment variables, as required for n
Gaussian statistics. Thus, when the statistics of
problem—such as the transition probabilities—have a v
non-Gaussian form, the Rayleigh-Ritz approximation m
still derive them successfully. Previous work on simple s
tems has already shown that very large fluctuations, far o
side the Gaussian core, may be successfully captured
Rayleigh-Ritz calculation. See the examples in@11#. Thus,
the Rayleigh-Ritz method can yield crucial informatio
about such large fluctuations, not available by a POP an
sis. When the system is strongly fluctuating, and the m
probable future event is only weakly selected, realizatio
deviating from that predicted event by percentages@d(t,t0)
would have sizable probability. In that case, a Gaussian t
sition density, such as always yielded by a linear Lange
model, would yield very misleading estimates of event pro
abilities. The Rayleigh-Ritz method has the potential to p
dict better the non-Gaussian probabilities of such lar
deviation events.

VI. FLUCTUATION-DISSIPATION RELATIONS

A basic premise of our work is that the dynamical syste
considered is statistically stable, i.e., that the probabi
measuresP(t) which solve the Liouville equation] tP(t)
5L̂P(t) for all initial conditionsP0 converge to a unique
invariant measureP` as t→`. ~This remark applies to au
tonomous evolution only, in which the Liouville operatorL̂
has no explicit time dependence.! Of course, such statistica
stability is not precluded—indeed, is even assisted—by c
otic instability of the underlying microdynamics. In this con
text, one expects that a generalized second law of thermo
namics should apply, appropriate to dissipative dynam
systems that are driven by external forces or open to
environment. In such a circumstance, the usual thermo
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namic entropy of the system proper obviously need not
crease, but only the overall entropy of the system plus e
ronment. An entropy function appropriate to describe
irreversible decay of the system to its stable, dissipa
steady state is provided by therelative entropyintroduced in
Sec. II. Its production rate~or, rather, destruction rate, wit
our sign convention! is zero in the steady state itself, an
thus does not account for the dissipative processes occu
therein. The latter have been subtracted out in the defini
of the relative entropy. However, the relative or generaliz
entropy turns out to be the most useful concept in the
namical description of the system proper, since it provide
Lyapunov functionalfor the irreversible decay to the stati
tical steady state. Furthermore, the usual relations betw
random fluctuations and mean dissipation—thefluctuation-
dissipation relations—are valid in terms of this generalize
or ‘‘excess’’ entropy production within the Rayleigh-Ritz a
proximation, subject to satisfaction of realizability co
straints. Such results for statistical steady states, under
potheses paralleling those made here, are due originall
Schlögl @14#. In view of the generality of these results, it
appropriate to give here a brief account.

The generalized entropy relative to the predicted m
history m* (t) is defined by

H* ~m,t !ªH„mum* ~ t !,t…, ~6.1!

whereH on the right-hand side is given by Eq.~2.15! in the
text. The generalized entropy production or exce
dissipation is then defined by h* (m,t)
ª(d/dt8)H* „m(t8),t8…u t85t , wherem( ) is the solution of
the closure equation which satisfiesm(t)5m. Thus, a simple
calculation gives

h* ~m,t !5h* ~m,t !–V~m,t !1
]H*
]t

~m,t !. ~6.2!

It is not hard to show that, to quadratic order accuracy
small deviations,

h*ª2S L
*
s 1

1

2
Ċ* D :dhdh1O~dh3!. ~6.3!

We shall sketch the proof below. First, however, let us rec
the relation between the noise covarianceQ* (t) and the On-
sager matrixL* (t)52A* (t)C* (t), already given in Eq.
~2.39!:

Q* 5L
*
s 1

1

2
Ċ* . ~6.4!

This is thefluctuation-dissipation relation (FDR) of the firs
type. Along with Eq. ~6.3! it allows one to express the qua
dratic part of the entropy production~or dissipation! directly
in terms of the noise covarianceQ* :

h*ª2Q* :dhdh1O~dh3!. ~6.5!

Thus, the FDR of the first type expresses a direct connec
between the noise characteristics and the dissipative pa
the linear dynamics. The generalized entropyH* (m,t) is a
non-negative, convex function, vanishing atm* (t). When
-
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the noise covarianceQ* (t) is positive-definite, Eq.~6.5! im-
plies that the generalized entropy is a Lyapunov function
the closure dynamics. At least for small deviationsdm(t)
from the solutionm* (t), where the linearized dynamic
dṁ(t)52L* (t)dh(t) applies, the entropyH* (t) is guaran-
teed to decrease in time,dH* (t)/dt,0. This implies a ‘‘sta-
bility’’ of the history m* (t) under the closure dynamics
generalizing the results of Schlo¨gl @14# to nonsteady states o
strongly fluctuating systems.@Strictly speaking, only in the
steady-state case does stability follow, by Lyapunov’s th
rem. Simple counterexamples show that the conditions
duced are not in general sufficient for stability of the soluti
trajectorym* (t) under the closure dynamics. For examp
level sets ofH* (m,t) may expand outward from the solutio
trajectory at an exponential rate, allowing nearby trajector
to diverge at a smaller exponential rate.#

The proof of Eq.~6.3! is as follows: Expanding the gen
eralized entropy in a power series aboutm* (t) yields, with
dm(t)ªm2m* (t),

H* ~m,t !5
1

2
G* ~ t !:dm~ t !dm~ t !

1
1

3!
G

*
~3!~ t ! :̇dm~ t !dm~ t !dm~ t !1O~dm4!.

~6.6!

Recall thatG
*
(p)(t)ª]pH* /]mp

„m* (t),t…. Taking one de-
rivative of Eq.~6.6! with respect tom gives

h* ~m,t !5G* ~ t !•dm~ t !1
1

2
G

*
~3!~ t !:dm~ t !dm~ t !1O~dm3!.

~6.7!

Introducingdh(t)ªG* (t)•dm(t), the latter becomes

h* ~m,t !5dh~ t !1
1

2
G

*
~3!~ t !:dm~ t !dm~ t !1O~dm3!.

~6.8!

A similar Taylor expansion of the dynamical vector fieldV
gives

V~m,t !5V* ~ t !1A* ~ t !dm~ t !1O~dm2!

5V* ~ t !2L* ~ t !dh~ t !1O~dh2!, ~6.9!

with V* (t)ªV„m* (t),t…. Now the Taylor expansion of the
first part of the excess dissipation~the force-flux quadratic
form! can be obtained by direct substitution of Eqs.~6.8! and
~6.9!:

h* –V5dh–V* 2L* :dhdh1
1

2
G

*
~3!
]dmdmV* 1O~dh3!.

~6.10!

The second part of the entropy production is obtained
partial differentiation of Eq.~6.6!:



er

s

in
th
rc
n

he
r-

lv

c-
hat
re.

pe

-
r-

ed
ing

e
r-
to

er
ns:

ix

n,
al

-

y

for
n
r

an-
xi-
sic
ear
his
e

act
s.

6990 PRE 58GREGORY L. EYINK
]H*
]t

52dh–V* 1
1

2

]G*
]t

„m* ~ t !,t…:dmdm

1
1

3!

]G
*
~3!

]t
„m* ~ t !,t…]dmdmdm1O~dm4!.

~6.11!

We made use of the facts that (]/]t) dm(t)5(]/]t) „m
2m* (t)…52V* (t) and that, for every non-negative integ
p, G

*
(p11)

„m* (t),t…5 ]G(p)/]m „m* (t),t…. Adding together
the two parts of the entropy production from Eqs.~6.10! and
~6.11! then gives

h* 52L* :dhdh1
1

2S G
*
~3!
–V* 1

]G*
]t D :dmdm1O~dh3!.

~6.12!

If one recalls that (d/dt)G* 5G
*
(3)
–V* 1]G* /]t, as in Eq.

~2.32!, then we obtain finally

h* 52L* :dhdh1
1

2
Ġ* :dmdm1O~dh3!

52S L
*
s 1

1

2
Ċ* D :dhdh1O~dh3!, ~6.13!

whereĠ* 52G* Ċ* G* was employed in the last line. Thi
is just Eq.~6.3!, as was claimed.

There is another result,the fluctuation-dissipation relation
of the second type, which holds for a general linear Langev
model. This relation expresses a proportionality between
mean response function to an appropriately coupled fo
and a time derivative of the two-time correlation functio
The equation to be considered is

dċ52L* ~ t !@dh2f~ t !#1q~ t !, ~6.14!

where f(t) is a deterministic external force. Because of t
linearity of this equation, it follows immediately that the co
responding response functionH(t,t0)ªdc(t)/df(t0)is non-
random and its averageH* (t,t0)ª^H(t,t0)& is thus given
just by the solution of

]

]t
H* ~ t,t0!5A* ~ t !H* ~ t,t0!1L* ~ t0!d~ t2t0!.

~6.15!

It is not hard to see that the latter solution is

H* ~ t,t0!5G* ~ t,t0!L* ~ t0!, ~6.16!

with G* the matrix Green’s function defined in Eq.~4.9!. On
the other hand, by using the same Green’s function to so
Eq. ~5.1! for C* (t,t0) starting from timet0, it is determined
that

C* ~ t,t0!5G* ~ t,t0!C* ~ t0!. ~6.17!

Because L* (t0)ª2A* (t0)C* (t0) and because
(]/]t0) G* (t,t0)52G* (t,t0)A* (t0) for t.t0, it follows
from Eqs.~6.16! and ~6.17! that
e
e

.

e

]

]t0
@C* ~ t,t0!G~ t0!#5H* ~ t,t0!G~ t0! ~6.18!

for t.t0. This proportionality is termed an FDR of the se
ond type.@The reader should be cautioned at this point t
there is a great divergence of terminology in the literatu
One finds often the following terms used instead:FDR of the
first kind to indicate what we called FDR of the second ty
andFDR of the second kindto indicate our FDR of the first
type. There are also authors who call Eq.~6.17! the FDR of
the second type~first kind! rather than Eq.~6.19!. For further
discussion of these matters, see@15#, Secs. 3.2, 4.1, and Ap
pendix D.# The intuitive content is better seen from the co
responding integral relation,

C* ~ t,t0!5F I2E
t0

t

dsH* ~ t,s!G* ~s!GC* ~ t0!, ~6.19!

which expresses the two-time correlation as the summ
mean response to infinitesimal perturbations at interven
times.

Another relation of the ‘‘second type’’ exists within th
Rayleigh-Ritz formalism. This has a slightly different cha
acter, in that the external perturbation field is now added
thedeterministicequation. As the simplest example, consid
the following perturbation of the moment-closure equatio

ṁ5V~m,t !1C~m,t !–h~ t !, ~6.20!

in which C(m,t) is the model single-time covariance matr
provided by the PDF ansatz. Then, ifR(t,t0)
ªdm(t)/dh(t0) uh50 is the corresponding response functio
it is easy to see by functional differentiation that, for initi
conditionsm(t0)5m* 0 in the above equation,R* satisfies

] tR* ~ t,t0!5A* ~ t !R* ~ t,t0!1C* ~ t0!d~ t2t0!.
~6.21!

The solution is justR* (t,t0)5G* (t,t0)C* (t0) for t.t0.
Thus, we see by reference to Eq.~6.17! above and the sym
metry of the covariance that

C* ~ t,t0!5R* ~ t,t0!1R
*
Á~ t,t0!, ~6.22!

whereR
*
Á(t,t8)ª@R* (t8,t)#Á. Relation~6.22! might be bet-

ter termed afluctuation-response relation, in analogy to that
of Kraichnan@16#. It turns out that this relation is completel
general within the Rayleigh-Ritz method. In fact, Eq.~6.20!
above is nothing more than the Euler-Lagrange equation
m(t) in the Rayleigh-Ritz algorithm, when the expectatio
constraint ~2.5! is incorporated via a Lagrange multiplie
h(t). That is, Eq.~6.20! above is equivalent to Eq.~3.93! in
@1#. All of these statements remain true even when the r
dom variables whose two-time covariance is to be appro
mated by the Rayleigh-Ritz approximation are not the ba
moment variables appearing in the closure and the lin
Langevin model is not available. The demonstration of t
fact will be given elsewhere@17#, since it is outside the scop
of the present work. The result~6.22! is very useful, because
it provides the most efficient numerical procedure to extr
the Rayleigh-Ritz predictions for the two-time covariance
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VII. CONCLUSIONS

In this work we have shown how the general Rayleig
Ritz algorithm for statistical dynamics of nonlinear system
proposed in@1#, gives rise to linear Langevin models. Su
stochastic models reproduce the predictions of the
Rayleigh-Ritz calculation for second-order statistics. In g
eral, for higher-order statistics and larger fluctuations,
two methods yield different predictions. Thus, the Rayleig
Ritz approach also gives a means to assessa priori the do-
main of validity of the linear Langevin models. A mor
physical derivation of Langevin models was also sketch
The theoretical anda priori Rayleigh-Ritz method was com
pared with the empirical anda posteriori POP method of
Penland. Finally, some general results on the thermodyn
ics of statistical moments—law of entropy increase a
fluctuation-dissipation relations at the linear level—were
rived within the Rayleigh-Ritz formalism.
nd
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