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We investigate in this work the validity of linear stochastic models for nonlinear dynamical systems. We
exploit as our basic tool a previously proposed Rayleigh-Ritz approximation fogftaetive actiorof non-
linear dynamical systems started from random initial conditions. The present paper discusses only the case
where the probability density functiohnsatzemployed in the variational calculation is “Markovian,” i.e., is
determined completely by theresentvalues of the moment averages. In this case we show that the Rayleigh-
Ritz effective action of the complete set of moment functions that are employed in the closure has a quadratic
part which is always formally an Onsager-Machlup action. Thus, subject to satisfaction of the requisite real-
izability conditions on the noise covariance, a linear Langevin model will exist which reproduces exactly the
joint two-time correlations of the moment functions. We compare our method with the closely related formal-
ism of principal oscillation patternd?OB, which, in the approach of Penland, is a method to derive such a
linear Langevin model empirically from time-series data for the moment functions. The predictive capability of
the POP analysis, compared with the Rayleigh-Ritz result, is limited to the regime of small fluctuations around
the most probable future pattern. Finally, we shall discusseamodynamics of statistical momenthich
should hold for all dynamical systems with stable invariant probability measures and which follows within the
Rayleigh-Ritz formalism[S1063-651X98)13111-2

PACS numbegps): 05.40:+j, 05.45+b, 92.60.Wc, 05.70.Ln

. INTRODUCTION whereq(t) is arandom forceof known statistics, which is

supposed to represent the effects of neglected variables be-
Yond the subsei} retained. Such a model—if it is valid—
will clearly give important information about predictability

We consider nonlinear dynamical systems governed b
(possibly nonautonomouslifferential equations:

x=0(x,1) (1.1) of the variablesj(t). For example, conditional probabilities
T ' P4ty ,to) are implied, which express precisely the limits
We may takex=(Xy, ... X,) " to have any number of com- ©ON predicting the moment variables at a future titrgiven

ponents, possib|y |nf|n|te|y many, forma"y induding their values at the present tlml@. One is thus interested to
infinite-dimensional dynamical systems governed by partiaknow the possibilities and limitations of such a stochastic
differential equations, etc. In many contexts the dynamics ofnodelization. . _
a selected set of variablek(x)z(fpl(x), . ,lAﬁn(X))T is of In. previous wprk[1,2] we ha\{e §tud|ed fluctuations of
interest. Of course, by the chain rule nonlinear Qynam|cs by aaction principle Such an approach

' to fluctuation theory goes back to the work of Onsager and
atn,Al;=(LAJ-VX) ':[,::\7. (1.2 Machlup[3]. They showed that Bnear Langevin dynamics

When the dynamics is nonlinear, the right-hand &idef Eq. PO =A(t)P+q(t), (1.9
(1.2 cannot generally be expressed in terms of the functions
& themselves. For example, whél{x) and g{x) are poly- in which q(t) is a Gaussian random force with zero mean
nomial functions of, the right-hand side consists of higher- and covariance
degree polynomials. This is a manifestation of ttiesure o
problemof nonlinear dynamical systems. (q(HgT (t"))=2Q(t)s(t—t"), 1.6
If one considers the initial-value problem with random
initial data, a common strategem to obtain mean valuegsan always be completely and equivalently reformulated in
m(t) :=<f/f)t is to make amoment closureapproximation terms of an action functiondl[ ¢]:
((0-V) ) =V(m,t) for some functionV of the selected .
moments, so that a closed equation T y]= th dt(h—Ag) TQ L - Ad). 1.7
Mt =V(m.t) (1.3 °
) ) ) ] ) o ) The interpretation of this functional is as a “fluctuation po-
is obtained. Likewise, if one is interested finctuationsof  tentjal” for time histories. That is, the probability that a par-
the variableg/(t), then one can make an approximation thatticular fluctuation valua(t) occurs for the random variable
. . ) a,Z(t) is given in terms of the Onsager-Machlup action by the
)=V (ht)+q(t), (1.4 exponential formula
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Prok(z};(t)~¢(t):—oo<t<+oc)~e‘r[‘/‘1. (1.9 Eq. (1.5)AwhicAh gives predictions for the two-time correla-
tions (Syf(t) Sy’ (t')) that are the same as those given by
This gives the most direct probabilistic significance of thethe Rayleigh-Ritz effective action. In general, however, for
Onsager-Machlup action. The fact that the action is a quahigher-order correlations, the linear Langevin model and the
dratic functional ofis is consistent with the fact that the Rayleigh-Ritz effective action will not yield the same predic-
solution of the linear Langevin equation is a normal randontions.
variable, with a Gaussian probability distribution. It is our purpose here to present the derivation of the
Although the Onsager-Machlup theory as originally de-linear Langevin model via the effective action method and to
veloped was restricted to linear Langevin dynamics, the acdiscuss its physical interpretation and limits of applicability.
tion method is completely general: For any statistical dy-The effective action provides a framework to derive not only
namical system and for any selected subset of randorthe linear theory but also the higher-order statistiuigher

variables ¢, an effective action[[¢] can be introduced Order in terms of the size of the fluctuations or the order of
which plays the same role as the Onsager-Machlup actiof{e correlatox. It thus provides a means to assess the size of
does for linear Langevin dynamics. It also has an interpretath€ corrections to the linear description. On the other hand,
tion as a fluctuation potential for the empirical average ovefhe linear Langevin model gives always the leading-order

N independent sampldd], i.e., contribution to the effective action and, therefore, many of
the important features of the full Rayleigh-Ritz approxima-
1N tion are essentially entirely determined by the linear equa-
Prot{m PV ()~ y(t): —e<t<+oo tion. We shall in addition give a more intuitive derivation of
n=1 the Langevin model within moment-closure methodology,
~exp( —NI[4]). (1.9 but not using a systematic or formal scheme. While such a

derivation provides no possibility to assess limitations of the

[The additional factor oN in the exponent in Eq(1.9) is  linear description, nevertheless it provides insight into the
discussed more below. See E®.44—(2.46.] The effec- Physical assumptions involved. We shall also compare our

tive action is also a generating functional for Giteducible ~ Method with the principal oscillation patte(ROP analysis,
multitime correlations of the variabla}(t), of arbitrary or- which is a well-known method to extract linear stochastic

der, and thus completely characterizes the distribution oandels empirically from time-series daf8]. Finally, we

those variables. To be precise, if the effective action is ex-s'ha‘II conclude with some general discussion on the thermo-

. ; L dynamics of moment-averages for dynamical systems with
t funct | B t) := it s . .
panded into a functional power series )= 1) stable statistics. In particular, we discuss the law of entropy

—(¥(1)), as increase and fluctuation-dissipation relations at the linear
level.

1
r[.p]:kgz Ef dt- - f dt I (t, )
Il. RAYLEIGH-RITZ EFFECTIVE ACTION
XSy (t1) -~ oy, (i), (1.10 OF MOMENT VARIABLES

- . . . . A. Reprise of the Rayleigh-Ritz method
then the coefficients are just the irreducible multitime corr-

elators[5]. The correlators withk=3 would all be zero fora _ 1he Rayleigh-Ritz approximation of the effective action
Gaussian process. We shall not review these subjects furthiy based upon a variational formulation of the moment-
here, since they have been thoroughly discussed elsewheftosure scheme. This is just a variational formulation of the
[1,2]. method of weighted residual] to solve 9,P= —V,-(UP)

In our earlier works, we developed a Rayleigh-Ritz ap-:= 2P, the Liouville equation for the phase-space distribution
proximation method by which the effective actiofifz] of P, The basic ingredients of a moment closure @re set of

any set of random variableZ may be calculated within a moment functiongh(x,t) = (Jr,(x,1), . . . . (x,t)) and (i) a

moment-closure scheme based uponAasatzfor a prob-  PDF Ansatz P(x;m,t), conveniently parametrized by the

ability density function(PDP). In particular, an approximate ,a4n valuesm:(f/;-) i=1 n, which it assigns to
1 1/ 3y gty

effective action may be obtained feg, the moment variables  those functions. The variableis included to denote aex-
retained in the closure. We shall show here that such glicit time dependence, i.e., any time dependence other than
Rayleigh-Ritz approximate effective actidn,[¢] of the  the implicit one through parametetgt),m(t). The a-type
moment variables themselves is not only a formal generaliparameters appear in the variational formulation of the clo-

zation of the Onsager-Machlup action, but is actually muchsure, in which one incorporates all of the moment functions
more closely related. In fact, we shall show that the leadingnto a single linear combination,

guadratic term in the Taylor expansigh.10 of I' [ ¢] is

always precisely of the Onsager-Machlup form, when the . -

PDF Ansatzemployed in the Rayleigh-Ritz calculation is A(X; a’t):izo ajihi(x,t). 2.1
“Markovian.” By the latter specification we denote PDF -

Ansazewhich are completely determined by theesentval- .

ues which they assign to averages of the moment function®ote that the constant functigfy(x,t)=1 must be included
Our result means that, for such a “Markovian” P@¥asatz, in the sum in order to satisfy the final-time conditigt{<)
there isalwaysformally a linear Langevin dynamics such as =1. The PDFAnsatzP(x;m,t) is subject to an initial con-
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dition that it match the considered initial distributid® for ~ the literature are of this type. It is also possible, even within
the problem;P(x;m,to) =Py, in the weighted-residual sense this more restrictive “Markovian” framework, to include
that the averages of the moment functionsf/;(t) must SOme h|§t0ry effects. Th_'s may be done, for exam_ple, by
match. Then. it is not hard to show that thement-closure constructing a closure using not only thenoment functions

equation Y(t), but also the corresponding velocity functiondthis
. definition generalizes that in E@l.2) to the case with ex-
m(t)=V(m(t),t), (2.20  plicit ime dependende

whereV(m,t) :=((d,+ L) (1)), is the result of varying V(t)=(d+ LN t). (2.7)

the action functional ) _ _
In this case, the closure equations become, instead of Eq.

» . X 2.2),
riarl- [ dnan - 2o ey 22
’ m(t)=V(1),
over the aboveAnsadze for A(t),P(t), with variational pa- (2.8
rameterswy(t), @(t),m(t). The Euler-Lagrange equations for V(t)=G(m(t),V(t),1),

m(t) are just Eq.(2.2) while the equations for(t),a(t)

have the' gnique solutioay(t)=1,a(t)=0 subject to the fi- whereG(m,V,t) ::<(ﬁt+2:1)\7(t)>m v 1 is the averagaccel-

nal conditions. o , __eration of the moment functions within a PDRnsatzde-
The Rayleigh-Ritz apprOX|mat|Aon to the effective action pending jointly uporm,V. Such schemes may be continued

I',[2] of a set of random variables is obtained, in general, indefinitely to higher orders, e.g., the next stage would be to

as the stationary poirif,[z]=®g, I'[A,P] varied over include a dependence jointly upan,V,G in the PDFAnN-

A(t),P(t) of the above forms, subject to the additional con-satz All of the results of this work carry over to such clo-

straints of unit overlap sures in terms of higher-order time derivatives, if one simply

considers the enlarged set of moment functions

(A, P1)=1 2.4 =(V),($,V,G), etc. A linear Langevin model will al-
and fixed expectation ways formally exist within such closure schemes which will
exactly reproduce the predictions of the Rayleigh-Ritz effec-
(A1), Z()P(t))=2(t) (2.5  tive action for the two-time statistics of the moment variables

¥ considered.
for each given history(t), for all timest after the initial

time to. [Recall thatZ(t) is an observable in the “Schro B. Rayleigh-Ritz effective action: Exact expressions
dinger picture” and that the only time dependence is ex- . . .
plic?t] P y P It is the main purpose of this paper to demonstrate the

We show here that the Rayleigh-Ritz approximationlatter essential fact. We will begin by developing some exact

I' . [ ] to the effective action of the moment variables them-EXPressions forl“*[:/q. Substituting th_e given forms of
selves has, in general, a quadratic part which is just aﬁ4(t)'P(t) into the action(2.3), one obtains
Onsager-Machlup action, when closure is achieved within noo.

the framework outlined above. Other closure schemes are r=> dta; () [m;(t) = V;(m(t),t)]. (2.9
conceivable within the Rayleigh-Ritz formalism and may i=1 Jtg

even better represent the physics in certain situations. A

“Markovian” approximation has been made above, in as-The overlap constraint2.4) may be incorporated by elimi-
suming that the PDFAnsatzP(-;m,t) is parametrized by hating the coefficientro(t), giving

only the present valuen(t) of then moment averages. This

is by no means necessary. More generally, one may assume . -
thatP[ - ;m,t] is a functional of the entirpast mean history A(t):l“LJZl aj (D[ (1) —my(1)]. (2.10
{m(s):s<t} of the n moment functions. In that case, the
closure equation becomes With that choice, the fixed expectation constraiat5) be-
. comes
m(t)=V[t;m], (2.6
n
in which V[t;m] is now also a functional over the past mean () =mi()+ >, a;(t)Ci;(1), (2.11
=1

history. It is not hard to show that axactequation always

exists of the form(2.6) for a suitable choice of the functional L

V[t;m]. (For example, sef8], Appendix A1) Thus, a clo- whereC(t):=(y{t) " (t));—m(t)mT(t) defines the covari-
sure incorporating such history effects is likely to be moreance matrix of the moment functions. Equati@ill) is easy
faithful to the physics, in general. Our work here does notto invert, with the result tha(t) =C~1(t)[ ¢(t) — m(t)]. It
discuss this more general case, but confines itself to this convenient to denote the inverse of the covariance matrix
“Markovian” Ansatz Although this is restrictive, it is nev- by I'(t):=C~(t). Substituting the above results faft), the
ertheless the case that most practical closures considered action becomes
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F*[t/f:m]=ft dtfm(t) = V(m(1),D)] " T(t)[ ¢(t) —m(t)]. H(QIP):J an(%). (2.19
0

(2.12

It is not hard to show that

In this expression, all of the constraints have been properly
incorporated, and the only remaining variational parameters H(gm(t),t)= min  H(Q|P(-|m(t),t)). (2.20
are them(t) variables. A set of variational equations must be QW) o=
developed to determine these, derived from the stationarity
condition of the action. This is a basic relation between the “thermodynamic” en-

Before carrying out this variation, however, it is useful to tropy H(-|m(t),t) and the “statistical mechanics” measure
introduce some auxiliary quantities. Define, within the PDFP(-|m(t),t). It is a form of themaximum entropy principle.
Ansatzemployed, a single-time cumulant-generating func-[This is indeed a maximum principle in terms of the usual
tion entropies S(u|m(t),t)=—H(u/m(t),t) and S(Q|P)=

. —H(Q|P).] A good mathematical reference [i8]. As we
F(h|m(t),t):=In(exp(h- (1)), (213 shall see laterH, (t):=H(m(t)|m, (t),t) should satisfy the
~ second law of thermodynamicdH, (t)/dt<0, whenm,(t)
for the moment functiongl(t), wherem(t) is the mean of s the predicted mean history of the moment functions and
the moment function within the PDRnsatz That is, the m(t) is any other solution of the closure equations suffi-
partial derivatives ciently nearm, (t). The derivatives oH also have thermo-
dynamic significance. For example, the first derivatives

p .
him), Do (2.14 h(u|m, (t),t):=0H/dpm (u|m, (t),t) are thethermodynamic

d°F
(p) N
CiP., (0=

i '0"hip forceswhich give the departure of the momenisfrom the
. predicted meansn, (t). Note, therefore, tha(u/m, (t),t)
are just thepth-order cumulants of thgq{t) within the An- =0 if and only if u=m, (t). On the other hand, the Leg-
satz The Legendre transform endre transform
H(u|m(t),1):=supg[p-h—F(him(1),t)], (2.19 F(him(t),t): =sud m-h—H(u/m(t),)], (2.21
Mm

a generalized entropyis the generating function of irreduc-
ible correlation functions. That is, is a generalized free energyt was defined already in Eq.
PH (2.13 above via the logarithm of the “partition function”
TP ()= ———(mt),D] e . 216  ZIm(),t):=(exph-(t)))m,; - _
Lo iy~ ‘(mip With this background, let us return to our analysis of the
. ) Rayleigh-Ritz effective action. Equatid2.17) yields imme-
In particular, the relations hold that diately a useful expression, complementary to &y12:

V() =hi(m(1),1), d

dh
im0~ 2 (o))

. (2.17 Cy[¢g;m]= ftwdt
H 0
r?m=c;Xt= (9—'_<m<t>,t>.

I

—Wm(t),)| [(t)—m(t)],

The latter relation will prove crucial in what follows.
It may be worthwhile to explain the intuitive significance (2.22

of these single-time quantities before continuing with the

development of the formulas for the action. They are all partvhere we have defined the new vector by matrix multiplica-

of a generathermodynamics of momeniBhus, the entropy tion:

H is a form of Boltzmann’s entropy, with his original sign

convention, i.e., positive and convex. It is related to fluctua- W(m(t),t):=I'(m(t),t)vV(m(t),t). (2.23
tion pl’Ol\kl)abAlhtleS of the empirical ensemble averagegt) Indeed, it follows from the chain rule and E@.17) that
=1NZN_ /" (t) at timet by

_ d ) oh
P(() =g m(t),t)~e NHEmOD (218 GO =TOm0)+ (1), (2.24

where the samplegt™(t) are all independently chosen from .
the ensembIePp(-eﬁKt(),)t). In other I?/vords,Hyoc—In Prob, Be_cause of symmetry of, it follows that (I(t)ym(t))’
which is Boltzmann’s famous relation. Because we have de=m' ()T(t). Thus, we may use the previous relation to
fined probabilities with respect to the meas@e |m(t),t),  Wwrite
this quantity corresponds to what is in mathematics called q h
the relative entropy The latter is an entropy of probabilit : T _

measures analogpgus to Gibbs’, but with Fr)gspegt to an grbi— [m®=VOI TM)=| gh(H) = E(t)_w(t)}
trary a priori measureP. Thus, (2.2

T
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When substituted into_ Eq2.12, the rt_asglt is Eq(2.22. ~ where Fi(ﬁ()(t)z al'y; 1om, (m(t),t) denotes the single-time
This is a more convenient form for variation. Indeed, settingthird-order irreducible correlation function within the PDF

o'l ém,(t) =0 gives Ansatz Using this function again,
. . oI'; W, d al';; . .
ik i
2 Tpldy=m+ 2 | 7 +—&mk)<¢,-—m,-) qili=r + 2 Time= (ak m-Vp) Ty (2:32

. Then, by means of Eq$2.31) and(2.32, we can see that

. dr ar oW [gw\ T
where the relation§2.17 and (2.25 have again been em- dt  “dt dJm | om
ployed. Simplifying, we obtain finally

ar .
. - [T oW =—E+(m—2V)'VmF—FA—(FA)T. (2.33
(lp_V) F—i—((//—m) E—F% =0. (227)
Furthermore, usingn, =V(m, ,t), it follows that
This is the variational equationto determinem(t) for a o, =V(m,.1)
given yAt). When it is employed to eliminats(t) in Eq.
(2.12 or Eq.(2.22, the result id", [ #], the final Rayleigh- -
Ritz approximation to the effective action of the moment
variablesf/;(t) in the closure.

One more transformation of the action is useful. We may
write EqQ.(2.12 as the sum of two terms:

I\

ot

. ar’,
+(m, —2V,)-Vl'y=— 7_(\/* VoI

d
= &F* . (234)

The effective action to quadratic order in deviatiof(t)
=¢(t)—m,(t) from the solutionm, (t) of the moment
equation is then found to be

F*[m:—fdtw—mfrw—m]

© 1(= d
+ft dtf—V] ' I[p—m]. (2.28 F?[a;{z]:ift dt(syp—om)"| = T, —T,A,
0 0
In the first term we integrate once by parts, while in the T
second we use E@2.27). This yields —(FeAy) | (04— Sm).

(2.39

In this expression, the quantitym(t) :=m(t) —m, (t) is
X (h—m) (2.29 to be determined in terms aofyAt) from the variational
' ' equation(2.27) linearized about the solutiog, (t) =m, (t).

Up until this point, no approximation has been made exceplt IS convenient to rewrite Eq2.27) as
Rayleigh-Ritz. Equatior{2.29 is the most convenient form .
to calculate the quadratic part of the Rayleigh-Ritz action. ¥~ V(&0 +[V(t)—V(m,1)]

aW)T
We shall now calculate the quadratic part of the full om

Rayleigh—Ritz ef_fecti\{e aCtiOE*,[.‘/’]' An important quantity Using again Egs(2.31) and(2.32), it is then straightforward
which appears is thénear stability operatorabout & solu- 5 |inearize this equation, yielding the variational equation
tion m(t) of the moment-closure equations=V(m,t), that  for sm(t):

om

dF ZaF W oW\ T
dtt “at om

1 (e
F*[‘/I]:Eft dt(gp—m) "
0

(—m)=0. (2.36

C. Quadratic-order action and linear Langevin model +C[£ +
at

is,
N (64— A, 59 —2Q, T, (8¢p—5m)=0,  (2.37)
A(t):=——=(m(t),t). 2.3 .
® 8m( ®.0 (2:30 where the definition has been introduced
The subscript * shall be used hereafter to indicate that the 2Q,:=—C,[I', +T, A, +AIT,]C
substitution of the particular solutiam, (t) for given initial * R
datam,, has been made: thug, (t):=dV/odm (m,(1),t). It =C,—A,C, —C,A, . (2.38

is easy to relateyW/Jm to the linear stability operator. In
fact, from the definition ofV in Eq. (2.23 it follows that Note thatL, :==—A, C, is the Onsager matrixin terms of
W which the linearized closure equation may be written in
IW: C S -
f:F§$Vk+ Ay 2.3y  force-flux form: 5¢p=—L, sh. Then Eq.(2.38 may be re
m; stated as
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1. lent to knowledge of the Rayleigh-Ritz predictions for all
Qu=5C,+ L, (2.39  multitime correlators up to ordés. In particular, knowledge
of the quadratic term in the effective actioR{?)[ 5y], is

with LS :=(L, +L])/2 denoting the symmetric part of the equivalent to knowledge of all two-time correlators as pre-
matrix L. dicted by Rayleigh-Ritz. Because knowledge of the linear
.-

, , @) .. model is equivalent to knowledge of that quadratic
Qne may ?OW obtain a f|BaI form fd?]’: [541] by e'éjmt') “Onsager-Machlup” part, the key conclusion that we draw
nating ém(t) from Eq.(2.35 by means of Eq(2.37) and by ig hatthe linear Langevin model is the unique such model to

using the definitior(2.38 of Q, . One obtains reproduce exactly all the two-time correlators predicted by
1= Rayleigh-RitzHowever, for correlators of higher than sec-

T'Or sus1= _f dt(Sb—A. s TO- Y St— AL ). ond order, the two will in general disagree.
« [oY] 4J, (S= Ay o) Q7 (oY= A, o) A simple observation which underlines this last point is

(2.40  the following: the solutiondys, (t) of the linear Langevin
model is always &aussianrandom function, while thérue

This is the final result. One observes that it has the form oﬂuctuation variables{i(t) is in generahon-GaussianThus
anOnsager-Machlup actiariThat is, the Rayleigh-Ritz result 5i1hough higher-order cumulants than second are zero for the

for IP[ sy is formally equivalent to the effective action | angevin solutionde, (t), they are generally nonzero for
that would be obtained for the solution of a linear Langeving,q e fluctuation variablég(t). Of course, it is clear that

model 53 (t) of the fluctuation variableSyt). To be pre- ¢4 any random proces8i(t) there is a Gaussian random

cise, the model stochastic equation is process s, (t) which has the same mean and variance
. (when those exist In fact, there is only one such Gaussian
o =A, (1) +q(t), (2.4)  process, in the sense that its distribution on the path space of

. . L , histories is uniquely determined. This result is sometimes
whereq(t) is a random force, white noise in time, with zero ¢4jjed the Khinchin-Craftetheorem. One way to construct

mean and covariance such a Gaussian process is via the central limit theorem.
The connection of the linear Langevin model to the cen-

T = - . ) . . i
(a(Ha’ (t'))=2Q, () s(t—t"). (242 {ral limit theorem is quite deep. In fact, the precise empirical

significance of the linear Langevin model is that its predic-

Note, in this context, that Eq2.39 is the time-dependent tions should be valid for the normalized sum variable:

generalization of thdluctuation-dissipation relatiorfof the
first type, connecting the noise covariance mat€x and R 1 N
the symmetric(dissipative part L] of the Onsager matrix. oYny(t)i=—= 2 S (1), (2.44
For details, see Sec. VI. N =1

To understand the significance of the linear Langeving the limit N—c, where the sum is oveN independent,
model, we must recall some basic facts about the effectivgyentically distributed samples. To prove this fact, recall that
action itself. As noted earlier, the effective action is a genhe effective action is a fluctuation potential for the empirical
erating functional for irreducible multitime correlation func- average oveN independent samples, in the sense of Eq.
tions. That is, theth-order irreducible correlator is given by (1.9 Now we consider the probability of a small fluctuation

ST value differing from the ensemble mean by terms of order
= [m,]. O(1/yYN). That is, we consider fluctuations
oy (ty) - - 8¢ (1)

243 wvy=m, 0+ 24

In particular, these coincide with functional Taylor coeffi- W
cients in the series expansigh.10. Furthermore, the irre- for dy(t)=0(1). Substituting Eq(2.45 into Eqg. (1.9 and
ducible correlators of order up th determine all of the employing the functional Taylor expansi¢h10 of I'[ ], it
cumulants—or connected correlators—ei(‘l‘?, it ...ty s then straightforward to show that
1 )
N/

up to the same ordée. [For example, fok=2,
(2.49

Fi(lf-)--ik(tlv e !tk)

(2.45

Prob(Sgy(t)~ 5¢(t))~exp[ —T@[s4]+0

Ci,i,(t1,t2) = (T ™) (11, t2);

for k=3, . . .
In the limit asN— o we arrive at the stated result. It is clear
that the distribution ofSyx(t) is Gaussian in the limitfIn
Ci1i2i3(tlat2’t3):jjzj ds, | ds; | dsCy 5 (11,81) fact, we have just repeated above one of the standard proofs

123 in the literature of the central limit theorefrFurthermore,

X Cij,(t2,52)Cij,(t3,S3) F(Z)[zpj acts as the Onsager-Machlup action of the limiting
Gaussian variable, hence described also by the equivalent

XTIy j,i4(S1,52:83); linear Langevin model.

It is extremely important to emphasize that the existence
etc. Sed5].] From these two facts we see that knowledge ofof such a linear Langevin model has only been formally
the Taylor series oF . [ /] up to terms of degrekis equiva-  established, and only for the Rayleigh-Ritz approximation
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' [#]. In general, the central limit theorem only guaranteed-angevin model for any given problem, in particular, to as-
that a Gaussian process should exist with the same mean af@iSs quantitatively how large are the corrections to its pre-
Covariance and not necessarily a process Obtained from %Cted Gaussian statistics. To I||UStl’ate the Comparlson Of the
stochastic differential equation or, for that matter, even a-angevin dynamics and full Rayleigh-Ritz approximation,
Markov process. It is thus a very striking prediction of the W& will discuss here very briefly a three-mode model already

Rayleigh-Ritz method with a “Markovian’Ansatz—and far ~ considered if10,11. This is a simple “one-step cascade”
from obviously true—that the two-time correlations should model of dissipative turbulent dynamics, originally intro-

be reproducible by such a linear Langevin model. Indeedgu?ed by Lprenz ]jn 196®1b2]. Thehdyngn}ilcsdqre Just éhle_
this prediction can fail in a very striking way: the noise co- =Y er equations of a top, but stochastically driven and lin-

varianceQ, (t) given formally by Eq.(2.38 may turn out early damped. The three modes are(x;,x,,X3), of which

not to be non-negative! Of course, non-negativity is a fundathe firstis the driven, unstable mode, and the second two are

mental requirement for any true covariance function. If itStable’ damp_ed modes. More specifically, the equations of
fails, then the “linear Langevin model” exists only in some motion are given by

formal sense and there is no actual stochastic process which
realizes the model. Put another way, the Rayleigh-Ritz ap-
proximation I', [ ] might fail to satisfy therealizability = with i,j,k a cyclic permutation of 1,2,3. Note that; +A,
propertiesrequisite for any true effective action. The rel- + A;=0 for conservation of energy by the nonlinear terms,
evant realizability propertiegpositivity, unicity of mini-  the damping constants akg>0, i=1,2,3, and the random
mizer, convexity have been discussed at length elsewhereiriving forces are zero mean with covariance

[1,10]. It is easy to see that these propertiedQf ¢] will ) ,

hold, at least for(t) close to the mean history, (t), if and (fi(OF(t"))=2r8(t—t"), (3.2

only if F{7[ 8¢4]=0, with strict inequality for allsy(t)#0. 4l >0, i=1,2,3. A “?" PDF Ansatzwas proposed for
Furthermore, examination of the Onsager-Machlup actionhjs system by Bayly, which leads to the quasinormal closure
(2.40 shows that realizability of ([ 5] holds if and only  equations. For full details of the model and closure, we refer
if the formal noise covariand®, (t) appearing in the Lange- to [10,11. Here we will simply remind the reader that the
vin model is positive. basic moments in the quasinormal closure are the three

modal energie;=(1/2)x?, i=1,2,3 and the triple mo-
ment?lexzxg, which gives the energy transfer out of the
It is interesting to compare the linear Langevin modelunstable driven mode and into the stable, damped modes. In

with the full nonlinear Rayleigh-Ritz approximation. In gen- the notations of this paper, the closure dynamics is given by
eral, this should allow one to assess the limitations of then=V(m) with

i(i:AinXk_ViXi‘Ffi, (31)

lll. A SIMPLE EXAMPLE

El AlT_2V1E1+ K1
E2 A2T_2V2E2+ K2

m= and V(m)= . 3.3
E3 ( ) A3T_2V3E3+ K3 ( )
T 4(A1E2E3+A2E1E3+A3E1E2)_(V1+ V2+ V3)T

Although very simple, this model and closure will illustrate several key features of our method. In addition to the key
comparison of the full Rayleigh-Ritz approximation and the linear Langevin model, it will allow us to discuss some important
issues concerning realizability.

The parameters of the linear Langevin model arising fromythelosure for the three-mode system are easy to determine.
The general form of the model is given in E¢R8.41 and(2.42. The dynamical matriA (here time-independent, since we
consider only the statistical steady sjategiven by the linearization of the closure equatiérs JV/Jm, or

-2, 0 0 A1
A 0 _21/2 0 A2 34
B 0 O _2V3 A3 ’ ( ' )

4(A2E3+A3E2) 4(A1E3+A3E1) 4(A1E2+A2E1) _(V1+ V2+ V3)

To obtain the matriA, appearing in the Langevin model for a specific situation, the corresponding momgrgatisfying
the fixed-point condition/(m, ) =0 must be substituted. The noise covariadzean be calculated as the symmetric part of
the Onsager matrik, and the latter is derivable froin=— AC, once the matrix covariande of the moment functiong is
known. The latter is provided by the PDFhsatz in this case Bayly’sy> Ansatz A simple calculation in that case gives
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3 1 1
2, T4 ~ 143 ~ 143 2E.T+ 3T5/3
2E1+ 5T 5T 5T 1
1T4/3 2E2+ §T4/3 }T4/3 2E2T+ 3T5/3
c= 2 22 2 (3.5
1 1 3
ET4/3 §T4/3 2E§+ ET4/3 2E3T+ 3'['5/3
2E,T+3T%® 2E,T+3T%® 2E,T+3T% 8E,E,E;+4(E;+E,+E3) T3+ 1972

Again, the matrice<C, and, thereforeQQ, are obtained by linear Langevin model—nevertheless produces very good
substituting the fixed-point moment values, . It is worth  quantitative predictions for several statistics. For example,
emphasizing that/ and C are theonly statistical inputs re- E,, E3, andT are all predicted to within about 0.3% and
guired from the PDF ansatz at the level of the linear Langeeonly the value ofg; is badly underpredictetby a factor of
vin model. If one is not interested to carry out a full nonlin- 3). Thus, simply labeling the model as “bad” because it
ear Rayleigh-Ritz calculation, then these are the onlyeads to a nonpositive noise covariar@g would be coun-
quantities that need be provided priori to construct the terproductive, for good predictions would then be thrown out
linear model. with the bad ones. What is needed are realizability diagnos-
For the steady-state dissipative cascade of the three-modies that are more focused and selective, which can help to
dynamics, it is quite easy to calculate baéth andQ, . We  pinpoint precisely which predictions are good and which are
have done so numerically with the same choice of parametdrad.
values of the three-mode model as in our earlier work In[10,11 we have proposed that such diagnostics in the
[10,11]. The results given to four decimal places are statistical steady state are provided by #féective poten-

tials. For any dynamical variablé(t) of the system, the

—0.002  0.000 0.000 2.00 effective potentiaM(z) is a fluctuation potential for the em-
A - 0.000 -—2.000 0.000 -1.000 36 pirical time average,:=1/T [jdtZ(t). That is,
* 0.000 0.000 —2.000 —1.000 S _
~2001 —0.996 —0.996 —2.00 Prol{Zy=2)~exp(=TV(z). @8
in the limit as T—«. Because the effective potential is a
and measure of likelihood of fluctuations in the very time aver-
age used empirically to define the mean statistics, it is plau-
3.385 0.545 0.545 —6.86 sible that it should be quite sensitive to the failure of the
0.545 0.246 —-0.796 1.815 closure for individual variables. The effective potential can
Q.= 0545 —0.796 0.246 1.815| be ob_tained_analytically via the time-extensive limit of the
effective action
—6.868 1.815 1.815 8.42
3.7 1
V(z):= lim ?F[ZT], (3.9
The matrixA, can be easily checked to have all eigenvalues T
with negative real parts. This indicates that the closure fixed .
point m, is linearly stable. However, it turns out that the In which
putative noise covarianc&), has eigenvalue spectrum 7z for O<t<T
13.426, 1.042, 1.031, and 3.194. One of the eigenvalues zr(t):= (3.10

is negative. Thus, there is a breakdown of realizability in the 0 otherwise.

Langevin model for this dissipative cascade state, Thus, it is easy to adapt the Rayleigh-Ritz algorithm to cal-

ap;:i:;r;i c?ng rg;al It(r? : VI\:/,%S r?]lztoh ggozvvﬂié?] 3&; usrhgﬁ %Lif:ljgsm ulate the effective potentials. [20,11] we have applied the
’ ull nonlinear Rayleigh-Ritz algorithm in the three-mode sys-

some length in Sec. V. For example, Penland in her funda: . 2 : :
mental work[6] obtained negative eigenvalues fQ, in a tem using they . Ansatzto calculate the gffectlve potentials
POP analysis of a different quadratically nonlinear three-Of modal energie€; andE; and .Of the triple momenT_._It
mode system, the chaotic Lorenz model. Her interpretatiof'@S found there that the potentialg, andVy are positive

of this realizability breakdown is that it was due to nonlin- @nd convex, satisfying realizability, whereas the potential
earities of the Lorenz model that could not be modeled a¥E, Was negative and convex, i.e., realizability-violating. In

white-noise random forces. This may be true, but it is nothis case, therefore, the effective potentials were—as
necessarily an indication that the linear Langevin model failsconjectured—successful in discriminating the good predic-
completely, for all statistics of the system. In our earliertions from the bad.

work [10,11] we have pointed out that thg? Ansatzfor our Here we wish to calculate these same effective potentials,
three-mode system—despite its leading to a nonrealizablbut using just the linear model rather than the full Rayleigh-
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-0.00015 ;s’é ] 1 FIG. 1. Approximate effective potentials of
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> -0.0002 # B . nal physical units ar¢V]=1/(time) and[E,]=
2 6/“ % (length/timef. However, the quantities have
8-0.00025 - J ® . been nondimensionalized by time and length
g},/ scales appropriate to the two unstable modes, i.e.,
-0.0003 | J N by settingv,=v3=1 for [v;]=1/(time) and A,
é/ =Az=—1 for [A;]=1/(length.
-0.00035 [ / YT
é
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energy E1

Ritz approximation. In general, a linear Langevin dynamicsthe minor matrix obtained frorK,, by deleting theith row
such as Eq(1.5 gives easily the joint effective potential of and column andk! is the vector obtained by deleting the

all variablesy therein, via the time-extensive limit of the elementk!! from theith column, then
Onsager-Machlup actiofl.7). Thus, from Eq.(2.40 one
obtains directly the quadratic term

1.
. V2 (gi) = 7 K4 80 (313
V2 ()= 7K, 59, (3.19) S
with « =k — (K1) 1k k. . These last formulas allow a
with Si=—m, andK, :=A] Q A, . Here the dynami- direct computation of the effective potentials of moment
cal matrix A, :;nd nois*e cor/ari’;anc’(;g* in the Langevin variables from the parameters appearing in the Langevin

model.
model are evaluated at the steady-state valgsof the . . .
moment averages. The effective potential of any single one, In Figs. 1-3 we have plotted the parabolic effective po-

of the moment variables can then be obtainedrtigimizing e UaISVe,, Ve, andVr obtained in this manner from the
over the others: linear Langevin model corresponding to tgé Ansatz The
plots cover exactly the same range as thodd11], where
V@ ()= min V(4. (3.12  the potentials were calculated by the full nonlinear Rayleigh-
Uy i# Ritz algorithm. For comparison, we have plotted both pairs

of potentials together in Figs. 1-3, the new ones using the
linear Langevin model and the earlier ones from the full
Rayleigh-Ritz approximation. Two points deserve to be em-

Since the joint effective potenti&B.11) is a simple quadratic
form, this minimization is easy to carry out. In factKf, is
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0.003 A T T T T
\ 'Rayleigh-Ritz’ ¢
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0.0025 - .
0.002 ‘é, 4
{\x FIG. 3. Approximate effective potentials ot
= % Rayleigh-Ritz vs Langevin model. The nominal
s % é - . . .
£ 00015 - % $ . physical units ofT are (length/time), but it has
8 Qe& g been nondimensionalized through the length and
kY g time scales of the unstable modes, as described in
0.001 - EY £ q the caption of Fig. 1.
% Fd
0.0005 | % ef’f -
xo /e
0 1 K 4 1 |
-0.6 -0.55 -0.5 -0.45 -0.4 -0.35
transfer T

phasized. First, the computational expense of the Langevino longer expect that the two calculation schemes will agree.
model calculation is considerably lower than the full In general, the full Rayleigh-Ritz calculation should capture
Rayleigh-Ritz calculation. Each of the separate symbols ofmportant non-Gaussian fluctuation effects that are missed by
the Rayleigh-Ritz effective potential curves was obtained bythe simpler Langevin model. In Figs. 4 and 5 the two realiz-
solving numerically a fixed point problem, coming from a aple potentials in the three-mode example are plotted over
perturbed closure equation. On the other hand, the Langevigider rangesye_andV+, calculated again both by the full
model calculation required the solution @ist one fixed R . L2 . :

. . ayleigh-Ritz method and by the linear Langevin model.
point problem, to determine the mean moment values at th learly for fluctuations 1-2 times the means. the full
bottom of the potentials. Those are all that are needed t% y, for . . ; T

ayleigh-Ritz calculation yields nonparabolic potentials as-

calculate the curvatureél and hence the quadratic potential sociated to non-Gaussian statistics. The range where the two
curves via Eq(3.13. Thus, the number of fixed point sym- : . ustics. 1he rang .
calculations agree gives anpriori indication of the size of

bols appearing in each of the Rayleigh-Ritz curves is a qua . . .
titative measure of the numerical superiority of the Langevirl}he fluctuations for which the linear model may be trusted. In

model calculation. Second, we see that the two calculatiof"® €35€ OWEz_ we see that' fluctuat|ons40% of the mean
schemes lead to essentially equivalent results in this ex@re well-described by the linear model, while #f the per-
ample, at least for fluctuations up to 20% of the mean valuecentage is~60%. Of course, it is an important question not
At least in this range, essentially the same predictions fofust whether the Rayleigh-Ritz calculation gives different re-
fluctuations are obtained for the linear model as for the fuliSults, but whether iimprovesupon the predictions of the
Rayleigh-Ritz approximation, and at greatly reduced exJinear model. In[10,1] it was already shown that the
pense. Rayleigh-Ritz effective potential¥/g, and Vr give quite

Of course, over a wider range of fluctuations one shouldyjood quantitative results for fluctuations over the smaller
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ranges plotted in Figs. 2 and 3. However, there the fullhistory, equivalent to the realizability for a linear Langevin
Rayleigh-Ritz and linear Langevin models substantiallymodel. It is thus particularly important to understand the
agree. It is difficult to get accurate results for effective po-physical hypotheses underlying the validity of such a model.
tentials in the wider ranges directly from numerical simula-

tion of the three-mode dynamics, because of the inc_reasing IV. A PHYSICAL DERIVATION OF THE LINEAR

rarity of those Iarge fluctuation events. Thus, we will .not LANGEVIN EQUATION

show directly an improved agreement of the full Rayleigh-

Ritz calculation for the effective potentials in the wider = We shall now explain how exactly the same linear Lange-
ranges. Nevertheless, one important observation can bén model can be obtained from a more physically transpar-
made. Becausx%>0 in everyrealization, there must be zero ent argument. Indeed, we shall show that the previous result
probability for events withE,<0. For this reason, the true for the quadratic order action can be recovered from a single
effective potentiaVg, must blow up, i.e., diverge to positive physical hypothesis: It is a basic assumption of the PDF-
infinity, as the negative values &, are approached. How- based moment C'O_S”f9 methodology tha_t, fo characterize a
ever, because the effective potential predicted by the line robability distribution in phase space, it is enough to know

Langevin model is a simple parabola, it will intersect thethe mean valugs '.t assigns to the moment fu.nct|ons.. In tha}t
ordinate axisE,=0 at somefinite value of V. It will thus ~ c2S& the distribution is assumed to be described with suffi-

predict some positive probability of seeing negative value§ient accuracy by the PDAnsatzwhich yields theA same
E,<0 (as would be true if the fluctuationsE, were indeed Mean values for those moment functions. Lety(s),
Gaussian random variable$iowever, as can be seen from s<t) denote the expectation over the conditioned ensemble
Fig. 4, the full Rayleigh-Ritz result fo\r/E2 is rising faster given the past history{/;(s),s<t} of the moment variables

than the parabo"c potentia| from the linear mode|@$o before timet. Our basic aSSUmption is that the PDF Ansatz
This is the correct tendency, as indicated above, and repr&an be employed as well as an approximation for such an
sents a qualitative improvement of the full Rayleigh-Ritz cal-ensemble conditioned on the past valudsre specifically,
culation. In general, one may expect that the full Rayleigh-we shall assume that the approximation is valid that

Ritz calculation will give a more refined result, because it

uses more information both from the dynamics and from the (V)| (3),s<t)~(V (1)) gy 1:=V(D), D). (4.
PDF Ansatzthan the Langevin model.

Nevertheless, it is plausible to believe—again quite inThjs js just a mathematical restatement of the hypothesis.
general—that the quadratic part will be the term which domi-jngeed, the conditioned ensemble yields the expected values
e th efecive potentel sufienty cose 1 1 I )0 - k) ndPC 0. is s the choce

i y way 3 . P . of the PDF Ansatzwhich matches those expected values.
k, =0 andV(¢;) =0(d¢;). Barring such cases of acciden- o~ ] .
. . [Note thatP(-;y(t),t) really meansP(-;m,t)|m- ) . i.€.,
tal degeneracy, one can see that the quadratic \;éfr)nvvnl h h ith .
well approximate the fullV, sufficiently near to the mini- the average over phase space with resped(tam, t) 1S
* always taken first, and then, subsequently, rdredomvari-

mum. In that regime, the linear Langevin model shall ac- o . )
count for the main tendencies of the full theory. In particular,2P!€#(1) is substituted fom.] We shall employ this hypoth-

the Rayleigh-Ritz effective potential will satisfy necessary®SiS mainly for the regime of small fluctuations, where
realizability conditions in the vicinity of the mean, when the R R R
Langevin model itself is realizability. Thus, realizability of V(@(t),1)=V(m, (1),1)+ A, (1) Sh(t) + O(54?).

the Rayleigh-Ritz effective potential is, close to the mean 4.2
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We have setSf/;(t):: f/f(t)—m*(t), the fluctuation variable. for all s less thant. Differentiating with respect ts then
We now consider the consequences of our hypothesis fd#IV€S
the dynamics of the fluctuations. We may write, without any

approximation, (q(s)qT (1))=0 (4.1
)=V (t)=(V(1)|(s),s<t)+q(t), (4.3 for all s<t. Thus, we see that the force must deorrelated
where the apove equation is simply an implicit definition ofIn fime:
the quantityq(t): (q(s)q" (1))=2Q, (t)8(s—t). (4.12
q(t) =V (1) —(V(t)|(s),s<t). (4.4 [In principle the matrixQ, (t) in Eq. (4.12) could be a dif-

. ferential operator with a finite-degree polynomial depen-

It follows directly from this definition tha{q(t))=0 and  dence ory,. We make the simplest assumption thgt(t) is
that an ordinary matrix functiod.The noise covariance function

o Q, (t) is uniquely determined if we assume, consistent with

(P(s)q"(1))=0 (45  our hypothesis, that the fluctuation covariand®(t)

=(SY(t) 5" (1)), is the same a€, (t) given by the PDF
Ansatz In that case, the noise covariance is uniquely ob-
tained from the relation

for all s<t. If we now invoke our hypothesis in E@4.3),
then we see that

A1) ~V((1),1)+q(t). (4.6)

In other words, within the approximation considered, the
random moment functionsyqt) satisfy the same closure | ! ;
- fy linear Langevin model that we obtained before from the

equations as the mean valuegt) =((t));, but with an  pavaigh Rtz approximation with a “Markovian"Ansatz

additional stochastic noisg(t) which is decorrelated from The present derivation should make clearer the physical as-
earlier values of the moment functions. This is very similarsymptions involved in that more formal derivation.
to theregression hypothesimade by Onsager, according to  The quadratic Onsager-Machlup term in the Rayleigh-
which fluctuations should decay on average according to thRijtz effective action will dominate in the vicinity of the
same macroscopic equation obeyed by the means. It is clegfean history, barring degenerate cases where the quadratic
that it is exaCtly at this pOint in the heuristic derivation that aterm vanishes. As seen ear”er, the rea“zabi”ty of the effec-
“Markovian” approximation has been made. It was empha-tive action in that region will be essentially equivalent to the
sized by Onsager and Machlgp3], p. 1509 that the regres-  realizability of the linear Langevin modéP.41). The latter
sion hypothesis is, for a Gaussian random process, actualproperty is really a consistency check on the validity of the
equivalent to the Markov property. physical hypotheses underlying the Langevin model, in par-
In the regime of small fluctuation8y(t), we may derive ticular the consistency of employing the Psatzfor an
a more specific formulation. There, to linear order accuracyensemble conditioned on the past history. In general, this

2Q,=C,—A,C,—C,A]. (4.13

Needless to say, we have now arrived at exactly the same

the equation following from the hypothesis is depends upon the particular situation considered. In particu-
_ lar, enough variables must be included in the moment clo-
S ~A, () S3t) +q(t) (4.7) sure that the Markovian assumption inherent in the approxi-

" . .

mation is justifiable.
Because of the linear relation, it is clear that consistencyf This is perhips the proper P'a?f tg rgm'”d the reabder that
requires the force(t) to be white noise in time. Indeed, Eq. "a vect,or Markov procesd;(t) Is divided Into two subsets
(4.7) can be solved explicitly, as [4(1),%(1)], then, in general, the separate subprocesses
Y(t) and ¢/ (t) will not be Markov. Thus, if the Rayleigh-
Ritz effective action is determined not for thempleteset of
moment variables(t) but instead only for a subsef(t),
then it will not ordinarily have the Onsager-Machlup form.
where we have introduced th@etarded matrix Green's However, there are special cases in which this is true. For
function example, suppose that the PBsatzis such that the two
variable sets are uncorrelated at equal times:

~ ~ t ~
6¢(t)=G*(t,to)5¢(t0)+ﬁG*(t,r)q(r)dr, 4.9

G*(t,t0)==Tex;{ ftA*(r)dr o(t—tp). (4.9
to

(WO O)—(F O) P (1))=0. (414

It then follows by substitutingg(s) from Eq.(4.8) into Eq. ~ Suppose also that the closure equation of the ignored set of
(4.5) that momentsm’ (t) is independent of the retained saft), that
is,

°G a(NgT (H))dr=0 4.1 -
fto «(s,0)(a(r)g" (t))dr (4.10 m’(t)=V'(m’(t),t), (4.19
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whereV' is a function ofm’ alone. This would be realistic here that complete sets of eigenvectors exist, which holds
for cases such as fluid turbulence with a passive scalar comenerically) In the limit as7—0, it is not hard to see that
taminant. In that case, the exact velocity dynamics is indethis procedure is equivalent to the one we described above,
pendent of the passive scalar. In cases where these two comhen the latter is specialized to the case of stationary time
ditions hold, the Rayleigh-Ritz actiofr,[¢] would still ~ series. There are good reasons why the “POP" method is
have a quadratic part of the Onsager-Machlup form. This i€mployed in meteorology and climatology, rather than the
Straightforward to show by arguments such as those usé@ethOd we have described. In those prOblem areas, the reso-

before. Needless to say, the two conditions are quite restridution of observation times is generally too coarse to allow a
tive. numerical evaluation of the necessary derivatives for our for-

mula (5.2). Thus, the above spectral decomposition is re-
V. RELATION TO PRINCIPAL OSCILLATION PATTERN quireq. On the ot.her hand, it s.hould be gmphasized thgt con-
(POP) ANALYSIS struction of the Imgar Lgnggvm mo_dellm the general time-
dependent case willequire time derivatives. One can still
There is a very close relation of the foregoing theory withdefine “time-dependent POP’s” as eigenvectors of the two-
the principal oscillation patterPOP analysis, particularly time Green’s functiorG(t,t’), but there is no simple opera-
as it was developed by Penlaj&l]. In her approach, the POP tion analogous to taking the logarithm to allow one to con-
method is a procedure to derive directly from the empiricalstruct therefrom the dynamical matrix.
time-series data for a selected set of variables the linear Of course, a Langevin model need not exist at all, as
Langevin dynamics whose stochastic solution has the samgointed out also by Penland. There are some basic consis-
mean and covariance as those empirically derived, if such gency properties that must be satisfied, if this is to be pos-
Langevin model exists. Her method can be explained irsible. First, the computed noise covarian@ét) must be
terms of the equations used above. Indeed, assuming the vpesitive-definite. This is the same type of realizability con-
lidity of a Langevin equation such as E{..5), it is easy to  dition that was encountered in the Rayleigh-Ritz approach. It

show that, for any>t’, is a qualitative check of the Langevin model assumption,

q basically amounting to a statistical stability condition within

"_ , that framework. A more stringent and quantitative property
—C(t,t")=A(t)C(t,t"), 51 - . : .

dt (LE)=AMCEL) 5.2 for validity of a linear Langevin model is deduced from the

L inversion formula5.2). This must hold forall t’ <t. In gen-
whereC(t,t") ==(g(t) ¢ (t')) is theempiricaltwo-time co-  eral, the right-hand side of E¢.2) defines an objedh(t,t’)
variance matrix. Thus, the linear dynamical matg) can  for t'=t— 7<t which will have a nontrivial dependence
be obtained as upon the time lagr:

A(t)= %C(t,t’) Cc (1), (5.2

t'=t—

d
A(t,t')zzaC(t,t').c—l(t,t'). (5.4

where, as beforeC(t):=C(t,t). OnceA(t) is known, the

FDT relation analogous to E@4.13 can be used to deter- To be consistent with a linear Langevin model, however,

mine Q(t) from A(t) andC(t). This is essentially the pro- there should be no such dependence. Hence, the degree of

cedure proposed by Penland to deduce the Langevin modepnstancy ofA(t,t") in the lag timer is a quantitative mea-

from the data, with appropriate changes having been made &re of the validity of the linear Langevin modeling assump-

allow for the general case of time-dependent statistics cortion. This is Penland's # test” [6]. We note that there is

sidered here. generally somer dependence in numerical applications of
A remark on terminology is in order. Although the proce- POP, even for time seriegeneratedby a Langevin model,

dure outlined above is the most natural generalization to thwith reliability of the results degrading seriously for very

time-dependent case, the rationale for the term “POP” is ndarge values ofr.

longer apparent. In fact, the “principal oscillation patterns”  On the other hand, there is also a peculiarity of the “zero-

in the standard approach for stationary time series are thi@g” or 7=0 prescription embodied in E@5.2), which de-

(right) eigenvectorsy;, i=1,... n of the linear propagator serves to be emphasized. If that definitionAdft) is substi-

G(7):=e™, for somer>0. The corresponding eigenvalues tuted into the FDT relation(4.13, one finds, as a

are of the formu;(7) =e™i in terms of the eigenvalueg of ~ consequence of the calculus identity

A. If a linear Langevin model is assumed valid for the two-

time covarianceC(t,t’):=S(t—t’), then the propagator can

be obtained fromG(7)=S(7)S 1(0). In the standard POP gt = GlCtt)+Ct" O] =, (5.9

method, the linear dynamical matri is reconstituted by

taking \:=1/7Inw;(7) and then writin
g #4(7) g for covariance functions which are continuously differen-

n tiable, that
A=, INTTAVAR (5.3
i=1 1d
wherev; are the corresponding left eigenvectors, satisfying Q=37 GlCLH=CLt)=Ct" D]y -=0.
the biorthogonality relation,” u;=g;; . (It has been assumed (5.6
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That is, the noise covariance vanishdentically at each of carrying out a successful Rayleigh-Ritz approximation

instantt. Of course, this shows that the matéx(t,t’) de-  with the same set of variables.

fined by Eq.(5.2) really does depend upon lag timein a Although POP is ara posteriorimethod, relying upon a

special way, under the above continuity assumption on theubstantial empirical input, it has predictive power. This ca-

covariances. In the Langevin model itself the assumption i@ab(;”'fly rezt'ls upon 6t1 batSi((:j hyplothtesis: tha(; the Poi_l—ﬁm%ﬁwn

: " e 4 model, while constructed only to reproduce partially the

ff\lﬁ()e,z) lerncti t?(glzt) E(Ct:(tt’)) :[(:C((tt));rll_ %gg:_:,;iggg secpnq-order staf[istics, may also be_ used to predict other

~t')?) for t<t’. Thus £he Langevin model covariances statlis'ucal properties of the system ywth some accuracy. In
. ' o e ) particular, quantities such as transition probability densities

have different valges _of time derivatives from f[he right a}r!dp(l/,,tl%’to) can be deduced from the POP Langevin

the left. I-.lowever,.|t will often be _the case thaF input empiri- el " For many problems of weather and climate predic-

cal covariances will have, approximately, continuous first desjon, such probabilities would yield crucial information. For

rivatives and then the computed noise will nearly Va”'Shexample, a measure of the spread of the predictions, such as

Already in the classical Onsager-Machlup theory there is gen|and'srelative discrepancy,

tricky issue of how such time derivatives should even be

calculated. As discussed by those autf@is(and at greater (| g(t) — G(t,to) g to)||?)

length by Onsager ifil3], pp. 418 and 419 the increment o(1,tp) = TNE ; (5.7

ot for calculating time derivatives should be small compared 0

to macroscopic relaxation times, but nevertheless large contan be estimated. This quantity is itself second-order, but not
pared to microscopice.g., mean-freetimes. If such time one used in the derivation of the POP Langevin model and
scales are not well-separated, as is often the case, then thisus not one that the model is guaranteed to predict success-
condition can only be marginally satisfied. In our case, thefully for arbitrary time lagsr=t—t,,.
proper choice of this increment is related to the optimal The Rayleigh-Ritz method has the potential for superior
choice of time lagr. Because the true dynamical matAXt)  predictive ability, particularly with regard to non-Gaussian
does not depend uponat all (assuming it exists it may be  statistics and large fluctuations. As we have noted, the full
better to choose the valug, at which the dependence is Rayleigh-Ritz calculation predicts nonvanishing higher-order
smallest, according to a “principle of minimal sensitivity.” cumulants of the moment variables, as required for non-
That is, rather than the zero-lag prescripti&), it may be  Gaussian statistics. Thus, when the statistics of the
better to takeA, (t):=A(t,t—7,), wherer, is the value of problem—such as the transition probabilities—have a very
the lag which minimizes some matrix norf{d/dz) A(t,t non-Gaussian form, the Rayleigh-Ritz approximation may
—7)||. These issues belong to the general rubric of POP pragstill derive them successfully. Previous work on simple sys-
tice, and we shall not discuss them further here. tems has already shown that very large fluctuations, far out-
Although the Rayleigh-Ritz and POP methods are seen teide the Gaussian core, may be successfully captured by a
be closely related, they have almost opposite points of viewRayleigh-Ritz calculation. See the examples[1d]. Thus,
The Rayleigh-Ritz approach is aa priori theoretical the Rayleigh-Ritz method can vyield crucial information
method, whereas the POP approacla igosterioriand em-  about such large fluctuations, not available by a POP analy-
pirical. That is, the Rayleigh-Ritz method uses the underlysis. When the system is strongly fluctuating, and the most
ing dynamical equations of motion computationally, in con-probable future event is only weakly selected, realizations
junction with physically inspired guesses for the systemdeviating from that predicted event by percentage¥(t,t,)
statistics. Thus, it deduces the linear Langevin model withoutvould have sizable probability. In that case, a Gaussian tran-
any direct empirical inputaside from experimental knowl- sition density, such as always yielded by a linear Langevin
edge which may have been exploited to develop suitablenodel, would yield very misleading estimates of event prob-
PDF Ansaze for the problem. On the other hand, the POP abilities. The Rayleigh-Ritz method has the potential to pre-
method makes no use of the dynamical equation of motiondict better the non-Gaussian probabilities of such large-
and, indeed, could be applied to time series generated hyeviation events.
very different means than a dynamical equation. POP is
blind to theoretical considerations, except through the choice VI. ELUCTUATION-DISSIPATION RELATIONS

of relevant variableq?b(t) to be used in the analysis. Because A basi . f Kis that the d ical svst
the two approaches have such different philosophies but yet . asic premise of our work 1S that the dynamical systém
a close formal relationship, they should be quite complemen(-:ons'denad IS stqnsucally stable,' €., that thg probability
tary in assaulting a given problem. In both cases, a ”neapweiasuresp(t) Wh'Ch solve_ _the Liouville equanm?tP(_t)
Langevin model is obtained which is supposed to reproduce £P(t) for all initial conditionsP, converge to a unique
faithfully all first- and second-order correlators of the se-invariant measure?, ast—c. (This remark applies to au-
lected set of variables. Thus, the Langevin model deducetbnomous evolution only, in which the Liouville operat6r
theoretically by the Rayleigh-Ritz approximation may behas no explicit time dependeng®f course, such statistical
compared directly with that deduced from the experimentaktability is not precluded—indeed, is even assisted—by cha-
data via POP. On the other hand, a successful application aftic instability of the underlying microdynamics. In this con-
the empirical POP procedure for a given set of variables—text, one expects that a generalized second law of thermody-
with “success” meaning here that realizability of the noise namics should apply, appropriate to dissipative dynamical
covariance is satisfied and that lag dependence of the deystems that are driven by external forces or open to the

duced matrixA(t,t") is weak—would imply the possibility environment. In such a circumstance, the usual thermody-
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namic entropy of the system proper obviously need not inthe noise covarianc®, (t) is positive-definite, Eq(6.5) im-
crease, but only the overall entropy of the system plus enviplies that the generalized entropy is a Lyapunov function for
ronment. An entropy function appropriate to describe thethe closure dynamics. At least for small deviatiofi®(t)
irreversible decay of the system to its stable, dissipativgrom the solutionm, (t), where the linearized dynamics
steady state is provided by thhelative entropyintroduced in sm(t)=—L, (t)sh(t) applies, the entropii, (t) is guaran-

Sec. Il. Its produgtio_n rateor,_ rather, destruction rate, With +oad to decrease in timeH, (t)/dt<0. This implies a “sta-
our sign conventionis zero in the steady state itself, and bility” of the history m, (t) under the closure dynamics,

:Eus (_joe_?hnolt ?tcco#nt fol; the dlst;lpattlvg prc;c_estshes docf_cq;r : neralizing the results of Sclgiy 14] to nonsteady states of
fetrheln. I t? a etr aveH een su tLaceI ?u In the de '?' 10 trongly fluctuating system$Strictly speaking, only in the
of he relalive entropy. HOWEVer, the relative or generalize teady-state case does stability follow, by Lyapunov’s theo-

entropy turns out to be the most useful concept in the Oly'rem. Simple counterexamples show that the conditions ad-

hamical descrlp.tlon of the system proper, since it prowdgs Yuced are notin general sufficient for stability of the solution
Lyapunov functionafor the irreversible decay to the statis- trajectorym, (t) under the closure dynamics. For example,

tical steady state. Furthermore, the usual relations betwe vel sets oH, (u.t) may expand outward from the solution

:jand_onl_ quctuIa:!ons and mﬁ?n dJSSIpatI?r;h—_thmtuatlolp- q trajectory at an exponential rate, allowing nearby trajectories
issipation relations-are valid in terms of this generalized | diverge at a smaller exponential rate.

or “excess” entropy production within the Rayleigh-Ritz ap- The proof of Eq.(6.3) is as follows: Expanding the gen-

proximation, subject to satisfaction of realizability con- . : : : ;
straints. Such results for statistical steady states, under hg_ra(l;z)ef eftlfr? p(){)m a power series abau(t) yields, with
potheses paralleling those made here, are due originally o™ AL AL
Schigyl [14]. In view of the generality of these results, it is 1
appropriate to give here a brief account. H )= =T (0): Sa(t) Sm(t
The generalized entropy relative to the predicted mean » (D) 2 » (D)2 0p(t) op(t)

history m, (t) is defined by
H*(M1t)::H(M|m*(t)1t)1 (61)

whereH on the right-hand side is given by E@.15 in the
text. The generalized entropy production or excess
dissipation  is  then  defined by 7, (mt) Recall thatDP)(t)=dPH, /auP (m, (t),t). Taking one de-
:=(d/dt")H, (m(t'),t")|y/—, wherem() is the solution of rivative of Eq.(6.6) with respect tou gives

the closure equation which satisfiegt) = u. Thus, a simple
calculation gives

1 g
+ 37 (1): Spa(t) Spa(t) Spa(t) + O( S

(6.6)

hy (m,t) =T (1) - Spa(t) + %F?(t): Spu(t) dp(t) +O(Su®).
(mt). (6.2 (6.7

*

ot

J
n*(ﬂlt):h*(”!t)'v(”‘!t)—'_
It is not hard to show that, to quadratic order accuracy inlntroducmg oN(1):=I (1) ops(1), the latter becomes

small deviations, 1
1 h ()= 8h(t) + ST (1): Sp(t) Spu(t) + O(p).
LS+ =C, ) :8héh+0(8h3). (6.3 6.9

Ne =" 2

We shall sketch the proof below. First, however, let us recallA similar Taylor expansion of the dynamical vector fiald
the relation between the noise covariafge(t) and the On-  gives

sager matrixL, (t)=—A, (t)C,(t), already given in Eq.

(2.39: V() =V, (1) +A, (1) Su(t) +O(S5u?)

. = _ + 2 )
Q-3+ %C* _ 6.4 V, (1) =L, (t) h(t) +O(sh%), (6.9
with V, (t) :=V(m,(t),t). Now the Taylor expansion of the
This is thefluctuation-dissipation relation (FDR) of the first first part of the excess dissipatidthe force-flux quadratic
type Along with Eq.(6.3) it allows one to express the qua- form) can be obtained by direct substitution of E(&8) and
dratic part of the entropy productidor dissipation directly  (6.9):
in terms of the noise covarian€g, :

1 ..
75 :=—Q, :6hsh+0(sh®). (6.5) h, -V=06h-V, —L, :8hoh+ 5T SuspV, +0(sh°).

Thus, the FDR of the first type expresses a direct connection (6.10
between the noise characteristics and the dissipative part of

the linear dynamics. The generalized entrdiy(u,t) is a  The second part of the entropy production is obtained by
non-negative, convex function, vanishing rat, (t). When partial differentiation of Eq(6.6):
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My _ sh-v +”F* t),t): Sud
i V, EW(m*()’)' Mop
1 ord

(M, (1),1): Sududu+O(Su?).

(6.11
We made use of the facts thav/gt) Su(t) = (a/dt) (m

-m, (t))=—-V, (t) and that, for every non-negative integer

p, TP D (m, (1),t)= ar®/ou(m, (t),t). Adding together
the two parts of the entropy production from E¢(8.10 and
(6.11) then gives

ar
Ff)'v* + (9—:) 2 opSp+O( 5h3).
(6.12

If one recalls that 4/dt)I", =T®.v, +4I, /4t, as in Eq.
(2.32, then we obtain finally

1
7. =L, :8hoh+ 5

1.
75 =~ Ly :6hoh+ 5T, : Sudpt O sh3)

=—|LS+ (6.13

1. 3
5Cs |:ohsh+0(sh?),

whereTI', =T, C,I', was employed in the last line. This
is just EQ.(6.3), as was claimed.

There is another resulhe fluctuation-dissipation relation
of the second typeavhich holds for a general linear Langevin

model. This relation expresses a proportionality between th
mean response function to an appropriately coupled forc
and a time derivative of the two-time correlation function.

The equation to be considered is

o=—L, (Y[ sh—f(t)]+q(t), (6.14

wheref(t) is a deterministic external force. Because of the

linearity of this equation, it follows immediately that the cor-
responding response functidi(t,ty) := Syf(t)/ 5f(ty)is non-
randomand its averagé, (t,tg):=(H(t,tg)) is thus given
just by the solution of

J
EH*(t'to):A*(t)H*(tato)"‘L*(to)5(t_to)-
(6.15
It is not hard to see that the latter solution is
H. (t,t0) = G, (1,t0) L« (to), (6.16

with G, the matrix Green’s function defined in E@..9). On
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J
%[C*(t,to)r(to)]:H*(t,to)r(to) (6.18

for t>t,. This proportionality is termed an FDR of the sec-
ond type.[The reader should be cautioned at this point that
there is a great divergence of terminology in the literature.
One finds often the following terms used insteBBR of the
first kindto indicate what we called FDR of the second type
andFDR of the second kintb indicate our FDR of the first
type. There are also authors who call E6.17) the FDR of
the second typ€irst kind) rather than Eq(6.19. For further
discussion of these matters, 448], Secs. 3.2, 4.1, and Ap-
pendix D] The intuitive content is better seen from the cor-
responding integral relation,

Cy(tito)= Cyi(to), (6.19

t
I—f dsH, (t,s)I',(s)
to

which expresses the two-time correlation as the summed
mean response to infinitesimal perturbations at intervening
times.

Another relation of the “second type” exists within the
Rayleigh-Ritz formalism. This has a slightly different char-
acter, in that the external perturbation field is now added to
thedeterministicequation. As the simplest example, consider
the following perturbation of the moment-closure equations:

m=V(m,t)+C(m,t)-h(t), (6.20
in which C(m,t) is the model single-time covariance matrix
Brovided by the PDF ansatz. Then, ifR(t,tg)
:=8m(t)/ sh(tg) |h=o is the corresponding response function,
ﬁ‘. is easy to see by functional differentiation that, for initial
conditionsm(ty) =m, ¢ in the above equatiorR, satisfies

IR, (1,10) = A, (DR, (1,t0) +C, (to) S(t—to).
(6.21)

The solution is justR, (t,tg) =G, (t,tg)C, (tg) for t>t,.
Thus, we see by reference to E§.17) above and the sym-
metry of the covariance that
Cy(tto) =Ry (t,t) + Ry (tto), (6.22
whereR, (t,t"):=[R, (t',t)]". Relation(6.22 might be bet-
ter termed dluctuation-response relatioin analogy to that
of Kraichnan[16]. It turns out that this relation is completely
general within the Rayleigh-Ritz method. In fact, £§.20
above is nothing more than the Euler-Lagrange equation for
m(t) in the Rayleigh-Ritz algorithm, when the expectation
constraint(2.5) is incorporated via a Lagrange multiplier
h(t). That is, Eq.(6.20 above is equivalent to E¢3.93 in

the other hand, by using the same Green’s function to solvkl]. All of these statements remain true even when the ran-

Eq. (5.1) for C, (t,ty) starting from timety, it is determined
that

C, (1,t9) = G (t,0) Ci (to) - (6.17
Because L, (tp):=—A,(ty)C,(tp) and because

(a9l dtg) G, (t,tg) = — G, (1, tg)A, (tg) for t>t,, it follows
from Eqgs.(6.16 and(6.17) that

dom variables whose two-time covariance is to be approxi-
mated by the Rayleigh-Ritz approximation are not the basic
moment variables appearing in the closure and the linear
Langevin model is not available. The demonstration of this
fact will be given elsewhergl7], since it is outside the scope
of the present work. The resu#.22 is very useful, because
it provides the most efficient numerical procedure to extract
the Rayleigh-Ritz predictions for the two-time covariances.
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